+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Transition Metal-Catalyzed Heterocycle Synthesis via C-H Activation. Edition No. 1

  • Book

  • 600 Pages
  • January 2016
  • John Wiley and Sons Ltd
  • ID: 3335863
Reflecting the tremendous growth of this hot topic in recent years, this book covers C-H activation with a focus on heterocycle synthesis.

As such, the text provides general mechanistic aspects and gives a comprehensive overview of catalytic reactions in the presence of palladium, rhodium, ruthenium, copper, iron, cobalt, and iridium. The chapters are organized according to the transition metal used and sub-divided by type of heterocycle formed to enable quick access to the synthetic route needed. Chapters on carbonylative synthesis of heterocycles and the application of C-H activation methodology to the synthesis of natural products are also included.

Written by an outstanding team of authors, this is a valuable reference for researchers in academia and industry working in the field of organic synthesis, catalysis, natural product synthesis, pharmaceutical chemistry, and crop protection.

Table of Contents

List of Contributors XXI

Foreword 1 XXVII

Foreword 2 XXIX

Preface XXXI

1 Computational Studies of Heteroatom-Assisted C–H Activation at Ru, Rh, Ir, and Pd as a Basis for Heterocycle Synthesis and Derivatization 1
Kevin J. T. Carr, Stuart A. Macgregor, and Claire L. McMullin

1.1 Introduction 1

1.2 Palladium 2

1.2.1 Intramolecular Heteroatom-Assisted C–H Activation 2

1.2.1.1 Early Computational Studies 2

1.2.1.2 The Role of the Base, Solvent, and Additives on Pd-Mediated Intramolecular C–H Activation 5

1.2.1.3 Intramolecular C–H Activation of Heterocyclic Substrates 9

1.2.2 Intermolecular C–H Activation 11

1.2.2.1 Early Computational Studies 11

1.2.2.2 Direct Functionalization via C–H Activation of Heterocyclic Substrates 15

1.3 Ruthenium, Rhodium, and Iridium 22

1.3.1 Intramolecular Heteroatom-Assisted C–H Activation 22

1.3.2 Intermolecular C–H Activation 25

1.3.3 C–H Activation and Functionalization 27

1.3.3.1 Heterocycle Formation with Internal Oxidants 28

1.3.3.2 Heterocycle Formation without Internal Oxidants 34

1.3.4 Alkenylation and Amination 38

1.4 Conclusions 40

Acknowledgments 41

References 41

2 Pd-Catalyzed Synthesis of Nitrogen-Containing Heterocycles 45
Lixin Li, Xiaolei Ji, and Hanming Huang

2.1 Introduction 45

2.2 General Consideration on Palladium Chemistry 45

2.3 Heterocycle Synthesis via C(sp3)–H Activation 46

2.3.1 Heterocycle Synthesis via Activated C(sp3)–H Bonds 47

2.3.2 Heterocycle Synthesis via Unactivated C(sp3)–H Bonds 49

2.4 Heterocycles via C(sp2)–H Activation 55

2.5 Conclusions 61

References 62

3 Pd-Catalyzed Synthesis of Oxygen-Containing Heterocycles 65
Yudong Yang and Jingsong You

3.1 Introduction 65

3.2 Palladium-Catalyzed C–H Activation/C–C Formation to Construct Oxacycles 66

3.2.1 Palladium-Catalyzed C–H Bond Arylation 67

3.2.2 Palladium-Catalyzed C–H Olefination 69

3.2.3 Palladium-Catalyzed C–H Alkylation 75

3.2.4 Palladium-Catalyzed C–H Carbonylation and Carboxylation 76

3.3 Palladium-Catalyzed C–H Activation/C–O Formation to Construct Oxacycles 80

3.3.1 Palladium-Catalyzed C–O Bond Formation via C(sp2)–H Activation 81

3.3.2 Palladium-Catalyzed C–O Bond Formation via Allylic C–H Activation 84

3.4 Conclusions 86

References 87

4 Pd-Catalyzed Synthesis of Other Heteroatom-Containing Heterocycles 91
Zhanxiang Liu and Yuhong Zhang

4.1 Introduction 91

4.2 Sulfur-Containing Heterocycles 91

4.2.1 Benzo[b]thiophenes 92

4.2.2 Benzothiazoles 95

4.2.3 Sultones 98

4.2.4 Sultams 100

4.3 Phosphorus-Containing Heterocycles 102

4.3.1 P–C Heterocycles (Dibenzophosphole Oxides) 102

4.3.2 O–P=OHeterocycles 106

4.3.3 P–N Heterocycles 107

4.4 Silicon-Containing Heterocycles 108

4.4.1 Benzosiloles 108

4.4.2 Oxasiline and Azasiline 110

4.5 Summary and Conclusions 112

References 113

5 Rh-Catalyzed Synthesis of Nitrogen-Containing Heterocycles 117
Krishnamoorthy Muralirajan and Chien-Hong Cheng

5.1 Introduction 117

5.2 Synthesis of Five-Membered Nitrogen Heterocycles 118

5.2.1 Synthesis of Indoles 118

5.2.2 Synthesis of Isoindolines 122

5.2.3 Synthesis of Unprotected Indoles 123

5.2.4 Synthesis of Indolines 124

5.2.5 Synthesis of Indazoles 124

5.2.6 Synthesis of Isoxazoles 125

5.2.7 Synthesis of Pyrroles 126

5.2.8 Synthesis of Isoindolin-1-ones 128

5.2.9 Synthesis of 3-Hydroxyisoindolin-1-ones 129

5.2.10 Synthesis of 3-(Imino)isoindolinones 129

5.2.11 Synthesis of Dihydrocarbazoles 131

5.2.12 Synthesis of Sultams 131

5.2.13 Synthesis of Phthalimides 132

5.3 Synthesis of Six-Membered Nitrogen Heterocycles 133

5.3.1 Synthesis of Isoquinolines by Rh(I) Catalysis 133

5.3.2 Synthesis of Isoquinolines by Rh(III) Catalysis 134

5.3.3 Synthesis of 1-Aminoisoquinolines 136

5.3.4 Synthesis of Isoquinolones and Related Derivatives 137

5.3.5 Synthesis of Phenanthridinones 142

5.3.6 Synthesis of Quinolines 143

5.3.7 Synthesis of Naphthyridines 144

5.3.8 Synthesis of Phthalazines 145

5.3.9 Synthesis of Acridines and Phenazines 145

5.3.10 Synthesis of Cinnolines 146

5.3.11 Synthesis of Isoquinolinones and Cinnolinones 147

5.3.12 Synthesis of Dihydropyridines 147

5.3.13 Synthesis of Pyridines 148

5.3.14 Synthesis of Pyridones 150

5.3.15 Synthesis of Pyrimidinones 150

5.4 Synthesis of Quaternary Ammonium Salts 151

5.4.1 Synthesis of Isoquinolinium Salts 151

5.4.2 Synthesis of Quinolizinium and Pyridinium Salts 153

5.4.3 Synthesis of Cinnolinium Salts 153

5.4.4 Synthesis of Isoquinoline N-Oxides and Pyridine N-Oxides 154

5.5 Synthesis of Seven-Membered Nitrogen Heterocycles 155

5.5.1 Synthesis of Azepinones 155

5.5.2 Synthesis of 1,2-Oxazepines 155

5.6 Summary and Conclusions 156

References 156

6 Rh-Catalyzed Synthesis of Oxygen-Containing Heterocycles 161
Bin Liu, Fang Hu, and Bing-Feng Shi

6.1 Introduction 161

6.2 Synthesis of Five-Membered Oxygen-Containing Heterocycles 161

6.2.1 Intermolecular Annulation 161

6.2.1.1 Phthalides 161

6.2.1.2 Furans 163

6.2.1.3 Other Five-Membered Oxygen-Containing Heterocycles 165

6.2.2 Intramolecular Cyclization 167

6.2.2.1 Dihydrobenzofurans 167

6.2.2.2 Dibenzofuran 168

6.3 Synthesis of Six-Membered Oxygen-Containing Heterocycles 168

6.3.1 Intermolecular Annulation 168

6.3.1.1 Chromenes 168

6.3.1.2 Chromones 174

6.3.1.3 Coumarin 175

6.3.1.4 Other Six-Membered Oxygen-Containing Heterocycles 178

6.3.2 Intramolecular Cyclization 178

6.4 Synthesis of Seven-, Eight-, and Nine-Membered Oxygen-Containing Heterocycles 179

6.4.1 Intermolecular Annulation 179

6.4.2 Intramolecular Cyclization 180

6.5 Summary and Conclusions 181

References 182

7 Ruthenium-Catalyzed Synthesis of Heterocycles via C–H Bond Activation 187
Bin Li and Baiquan Wang

7.1 Introduction 187

7.2 Ruthenium-Catalyzed Heterocycle Synthesis via Intramolecular C–C Bond Formation Based on C–H Bond Activation 188

7.3 Ruthenium-Catalyzed Heterocycle Synthesis via Intramolecular C–N Bond Formation Based on C–H Bond Activation 192

7.4 Ruthenium-Catalyzed Heterocycle Synthesis via Intermolecular C–C/C–O Bond Formation Based on C–H Bond Activation 194

7.4.1 Cyclization with Alkynes 194

7.4.2 Cyclization with Alkenes 198

7.4.3 Cyclization with Carbon Monoxide 201

7.4.4 Cyclization with 1,2-Diol 202

7.5 Ruthenium-Catalyzed Heterocycle Synthesis via Intermolecular C–C/C–N Bond Formation Based on C–H Bond Activation 203

7.5.1 Cyclization with Alkynes 203

7.5.2 Cyclization with Alkenes 220

7.5.3 Cyclization with Carbon Monoxide 225

7.5.4 Cyclization with Isocyanate 228

7.6 Summary and Conclusions 228

References 229

8 Cu-Catalyzed Heterocycle Synthesis 233
Feng Chen and Ning Jiao

8.1 Introduction 233

8.2 Four-Membered-Ring Formation 233

8.3 Five-Membered-Ring Formation 234

8.3.1 Copper-Catalyzed Synthesis of Pyrroles 234

8.3.2 Copper-Catalyzed Synthesis of Pyrrolidines 237

8.3.3 Copper-Catalyzed Synthesis of Indoles 240

8.3.4 Copper-Catalyzed Synthesis of Indolines 242

8.3.5 Copper-Catalyzed Synthesis of Oxindoles 245

8.3.6 Copper-Catalyzed Synthesis of Indole-2,3-dione (Isatins) 248

8.3.7 Copper-Catalyzed Synthesis of Indolizines 250

8.3.8 Copper-Catalyzed Synthesis of Carbazoles 250

8.3.9 Copper-Catalyzed Synthesis of Imidazoles 251

8.3.10 Copper-Catalyzed Synthesis of Benzimidazoles 254

8.3.11 Copper-Catalyzed Synthesis of Imidazopyridines 256

8.3.12 Copper-Catalyzed Synthesis of Pyrazoles and Indazoles 260

8.3.13 Copper-Catalyzed Synthesis of Oxazoles 261

8.3.14 Copper-Catalyzed Synthesis of Benzoxazoles 262

8.3.15 Copper-Catalyzed Synthesis of 1,2,3-Triazoles 263

8.3.16 Copper-Catalyzed Synthesis of 1,2,3-Tetrazoles 264

8.3.17 Copper-Catalyzed Synthesis of Furans 264

8.4 Six-Membered-Ring Formation 266

8.4.1 Copper-Catalyzed Synthesis of Pyridines 266

8.4.2 Copper-Catalyzed Synthesis of Quinolines 267

8.4.3 Copper-Catalyzed Synthesis of Isoquinolines 271

8.4.4 Copper-Catalyzed Synthesis of Quinolinones 272

8.4.5 Copper-Catalyzed Synthesis of Acridones 273

8.4.6 Copper-Catalyzed Synthesis of Phenanthridine 275

8.4.7 Copper-Catalyzed Synthesis of Quinazoline and Quinazolinones 276

8.4.8 Copper-Catalyzed Synthesis of Cinnolines 277

8.4.9 Copper-Catalyzed Synthesis of Pyrimidinone 278

8.4.10 Copper-Catalyzed Synthesis of 1,4-Dihydropyrazine Derivatives 278

8.4.11 Copper-Catalyzed Synthesis of 1,3-Oxazines 279

8.4.12 Copper-Catalyzed Synthesis of Oxazinone Derivatives 280

8.4.13 Copper-Catalyzed Synthesis of Chroman Derivatives 280

8.4.14 Copper-Catalyzed Synthesis of Benzolactone Derivatives 281

8.4.15 Copper-Catalyzed Synthesis of Coumarin Derivatives 282

8.4.16 Copper-Catalyzed Synthesis of Xanthone Derivatives 283

8.4.17 Copper-Catalyzed Synthesis of N,S-Heterocycles 284

8.5 Summary 285

References 285

9 Fe- and Ag-Catalyzed Synthesis of Heterocycles 291
Jin-Heng Li and Ren-Jie Song

9.1 Introduction 291

9.2 Iron-Catalyzed Synthesis of Heterocycles 291

9.2.1 Iron-Catalyzed Synthesis of Nitrogen-Containing Heterocycles 292

9.2.2 Iron-Catalyzed Synthesis of Oxygen-Containing Heterocycles 304

9.3 Silver-Catalyzed Synthesis of Heterocycles 307

9.3.1 Silver-Catalyzed Synthesis of Nitrogen-Containing Heterocycles 308

9.3.2 Silver-Catalyzed Synthesis of Oxygen- or Phosphorus-Containing Heterocycles 311

9.4 Conclusion and Outlook 312

References 314

10 Heterocycles Synthesis via Co-Catalyzed C–H Bond Functionalization 317
Naohiko Yoshikai

10.1 Introduction 317

10.2 Heterocycle Synthesis via Low-Valent Cobalt-Catalyzed C–H Activation 319

10.3 Heterocycle Synthesis via High-Valent Cobalt-Catalyzed C–H Activation 325

10.4 Heterocycle Synthesis via C–H Functionalization under Co(II)-Based Metalloradical Catalysis 331

10.5 Summary and Conclusions 335

References 335

11 Ir-Catalyzed Heterocycles Synthesis 339
Yasushi Obora

11.1 Introduction 339

11.2 Ir-Catalyzed Heterocyclization by ortho-Aryl C–H Activation 340

11.2.1 Ir-Catalyzed [3+2] Cyclization of Ketimines with 1,3-Dienes/Alkynes 340

11.2.2 Ir-Catalyzed Cyclization of Benzoic Acid to Give 2-Hydroxy-6H-benzo[c]chromen-6-ones 342

11.2.3 Ir-Catalyzed Cyclization of N-Arylcarbamoyl Chlorides with Alkynes 342

11.3 Ir-Catalyzed Heterocyclization by Benzylic C–H Activation 343

11.3.1 Ir-Catalyzed N-Cyclization of Aryl Azides 343

11.3.2 Ir-Catalyzed Silylation of Benzylic Amines and 2,N-Dialkylanilines via Aryl C–H Bond Activation 343

11.4 Ir-Catalyzed Heterocyclization by sp3 C–H Activation 344

11.4.1 Ir-Catalyzed N-Cyclization of Aryl Azides 344

11.5 Heterocyclization by Ir Catalyst as Lewis Acid 345

11.6 Ir-Catalyzed Heterocyclization by C–H Bond Activation through Transfer Hydrogenation 345

11.6.1 Ir-Catalyzed N-Heterocyclization of Naphthylamines with Diols 345

11.6.2 Ir-Catalyzed Reaction of Anilines with Diols to Give 2,3-Disubstituted Indoles 346

11.6.3 Ir-Catalyzed Synthesis of Indole from 2-Aminoaryl Ethyl Alcohol 347

11.6.4 Ir Catalysts with Pyrazoyl and Pyrazoyl-1,2,3-bidentate (N–N) Ligands for the Synthesis of Tricyclic Indoles 347

11.7 Miscellaneous Reactions 349

11.7.1 Ir-Catalyzed Arylative Cyclization of Alkynones with Arylboronic Acid 349

11.7.2 N-Heterocyclization of Aminoalcohol by Ir Catalyst with a Triazolyl-diylidene Ligand 349

11.7.3 Synthesis of Indoles from Aminoalcohol and Alkynyl Alcohols by Ir–Pt Catalyst 350

11.7.4 Synthesis of Pyrrolo[1,2-a]quinoxalines by Iridium Complex-Catalyzed Annulation of 2-Alkylquinoxalkines 351

11.7.5 Ir-MOF-Catalyzed Hydrosilylation/Ortho-Silylation to Benzoxasiloles 352

11.7.6 Synthesis of Furanes and Pyrroles Involving Alkylation of 1,3-Dicarbonyl Compounds by Iridium–Tin Bimetallic Catalyst 353

11.8 Summary and Conclusions 353

References 354

12 Au- and Pt-Catalyzed C–H Activation/Functionalizations for the Synthesis of Heterocycles 359
Yuanjing Xiao and Junliang Zhang

12.1 Introduction 359

12.2 Synthesis of O-Heterocycles 360

12.2.1 Synthesis of Five-Membered O-Heterocycles 360

12.2.1.1 Via Au-Catalyzed C(sp)–H Functionalization 360

12.2.1.2 Via Au-Catalyzed Aryl C(sp2)–H Functionalization 360

12.2.1.3 Via Au-Catalyzed C(sp3)–H Functionalization 362

12.2.1.4 Via Pt-Catalyzed C(sp3)–H Functionalization 362

12.2.1.5 Via Au-Catalyzed C(sp)–H and C(sp3)-H Functionalization 362

12.2.2 Synthesis of Six-Membered O-Heterocycles 363

12.2.2.1 Via Au-Catalyzed C(sp)–H Functionalization 363

12.2.2.2 Via Au-Catalyzed Formyl C(sp2)–H Functionalization 364

12.2.2.3 Via Au-Catalyzed Aryl C(sp2)–H Functionalization 365

12.2.2.4 Via Au-Catalyzed C(sp3)–H Functionalization 367

12.3 Synthesis of N-Heterocycles 369

12.3.1 Synthesis of Five-Membered N-Heterocycles 369

12.3.1.1 Via Au-Catalyzed C(sp)–H Functionalization 369

12.3.1.2 Via Au-Catalyzed C(sp)–H and Alkenyl C(sp2)–H Functionalization 369

12.3.1.3 Via Au-Catalyzed C(sp)–H, C(sp3)–H, or Aryl C(sp2)–H Functionalization 369

12.3.1.4 Via Au-Catalyzed Aryl C(sp2)–H Functionalization 370

12.3.1.5 Via Au-Catalyzed C(sp3)–H Functionalization 374

12.3.1.6 Via Au-Catalyzed Miscellaneous Reactions 374

12.3.2 Synthesis of Six-Membered N-Heterocycles 376

12.3.2.1 Via Au-Catalyzed C(sp)–H and Aryl C(sp2)–H Functionalization 376

12.3.2.2 Via Au-Catalyzed Formyl C(sp2)–H Functionalization 376

12.3.2.3 Via Au-Catalyzed C(sp)–H and C(sp3)–H Functionalization 377

12.3.2.4 Via Au-Catalyzed Aryl C(sp2)–H Functionalization 377

12.3.2.5 Via Pt-Catalyzed Aryl C(sp2)–H Functionalization 379

12.3.2.6 Via Au-Catalyzed C(sp3)–H Functionalization 380

12.3.3 Synthesis of Seven-Membered N-Heterocycles 382

12.3.3.1 Via Au-Catalyzed C(sp2)–H Functionalization 382

12.3.3.2 Via Au-Catalyzed C(sp3)–H Functionalization 382

12.4 Synthesis of S-Heterocycles 383

12.4.1 Synthesis of Seven-Membered S-Heterocycles via Au-Catalyzed Aryl C(sp2)–H Functionalization 383

12.5 Synthesis of O-Heterocycles and N-Heterocycles 383

12.5.1 Synthesis of Five-Membered O-Heterocycles and N-Heterocycles 383

12.5.1.1 Via Au-Catalyzed C(sp)–H Functionalization 383

12.5.1.2 Via Au-Catalyzed Aryl C(sp2)–H Functionalization 385

12.5.2 Synthesis of Six-Membered O-Heterocycles and N-Heterocycles 386

12.5.2.1 Via Pt or Au-Catalyzed Aryl C(sp2)–H Functionalization 386

12.6 Synthesis of Fused Polycyclic Polyheterocycles 389

12.6.1 Via Au-Catalyzed Aryl C(sp2)–H Functionalization 389

12.6.2 Via Au- or Pt-Catalyzed Aryl C(sp2)–H Functionalization 393

12.6.3 Via Pt-Catalyzed Aryl C(sp2)–H Functionalization 394

12.6.4 Via Au-Catalyzed C(sp3)–H Functionalization 395

12.6.5 Via Pt-Catalyzed C(sp3)–H Functionalization 396

12.7 Conclusions 397

References 398

13 Heterocycle Synthesis Based on Visible-Light-Induced Photocatalytic C–H Functionalization 403
Wei Ding, Wei Guo, Ting-Ting Zeng, Liang-Qiu Lu and Wen-Jing Xiao

13.1 Introduction 403

13.2 de novo Synthesis of Heterocycles 404

13.2.1 Photocatalytic sp3 C–H Functionalization for Heterocycle Synthesis 404

13.2.2 Photocatalytic sp2 C–H Functionalization for Heterocycle Synthesis 415

13.3 Direct C–H Functionalization of Heteroarenes 427

13.3.1 The Photocatalytic Alkylation of Heteroarenes 427

13.3.2 The Photocatalytic Arylation of Heteroarenes 437

13.3.3 The Photocatalytic Amination and Sulfuration of Heteroarenes 439

13.4 Summary and Outlook 443

References 444

14 Heterogeneous C–H Activation for the Heterocycle Synthesis 449
Lin He and Matthias Beller

14.1 Introduction 449

14.2 Heterogeneous Pd-Catalyzed Heterocycle Synthesis via C–H Activation 450

14.3 Heterogeneous Photocatalysis for the Heterocycle Synthesis via C–H Activation 460

14.4 Summary 464

References 464

15 Transition Metal-Catalyzed Carbonylative Synthesis of Heterocycles via C–H Activation 467
Jianbin Chen and Xiao-Feng Wu

15.1 Introduction 467

15.2 Cobalt-Catalyzed Heterocyclic Synthesis via Carbonylative C–H Activation 468

15.2.1 Five-Membered Ring Synthesis 468

15.3 Rhodium-Catalyzed Heterocyclic Synthesis via Carbonylative C–H Activation 471

15.3.1 Five-Membered Ring Synthesis 471

15.4 Ruthenium-Catalyzed Heterocyclic Synthesis via Carbonylative C–H Activation 472

15.4.1 Five-Membered Ring Synthesis 472

15.4.2 Six-Membered Ring Synthesis 476

15.5 Palladium-Catalyzed Heterocyclic Synthesis via Carbonylative C–H Activation 477

15.5.1 Four-Membered Ring Synthesis 477

15.5.2 Five-Membered Ring Synthesis 479

15.5.3 Six-Membered Ring Synthesis 485

15.6 Summary and Outlook 500

References 501

16 Synthesis of Natural Products and Pharmaceuticals via Catalytic C–H Functionalization 505
Junichiro Yamaguchi, Kazuma Amaike, and Kenichiro Itami

16.1 Introduction 505

16.2 Natural Products Containing Heteroaromatics 505

16.2.1 Indoles and Related Compounds 505

16.2.1.1 Dragmacidin D (C–H Arylation of Indoles at the C3 Position) 507

16.2.1.2 Clavicipitic Acid (C–H Alkenylation of Indoles at the C3 Position) 507

16.2.1.3 Paraherquamide B (Intramolecular C–H Alkylation of Indoles at the C2 Position) 507

16.2.1.4 PKC Inhibitor (Intramolecular C–H Alkylation of Indoles at the C2 Position) 509

16.2.1.5 Clavicipitic Acid (C–H Alkenylation of Indoles at the C4 Position) 511

16.2.1.6 Hippadine (C–H Borylation of Indoles at the C7 Position) 511

16.2.1.7 Dictyodendrin B (C–H Arylation of Pyrroles at the C3 Position, C–H Borylation of Indoles at the C7 Position, and Nitrene C–H Insertion of Indoles at the C4 Position) 512

16.2.1.8 Paullone (Oxidative Larock Indole Synthesis) 514

16.2.1.9 Horsfiline (Indole Synthesis by Intermolecular C–H Coupling) 514

16.2.1.10 Dimebolin (Indole Synthesis by Nitrenoid C–H Insertion Reaction) 515

16.2.2 Pyrroles and Related Compounds 516

16.2.2.1 Rhazinilam (Intramolecular and Intermolecular C–H Arylation of Pyrroles at the C4 Position) 516

16.2.2.2 Rhazinilam and Aspidospermidine (C–H Borylation and C–H Alkylation of Pyrroles at the C4 and C5 Positions) 518

16.2.2.3 Lamellarins C and I (Inter- and Intramolecular C–H Arylation of Pyrroles at the C2, C3, and C4 Positions) 518

16.2.2.4 Dictyodendrins A and F (C–H Arylation and C–H Insertion of Pyrroles on C2, C3, and C5 Position) 521

16.2.3 Carbazoles and Related Compounds 522

16.2.3.1 Clausine P and Glycozolidine (Synthesis of Carbazoles by Intramolecular Ar–H/Ar–X Arylation) 522

16.2.3.2 Clausenine (Synthesis of Carbazoles by Intramolecular C–H/C–H Arylation) 523

16.2.3.3 Clausine C and Glycozoline (Synthesis of Carbazoles by Intramolecular C–H Amination) 524

16.2.4 Benzofuran and Related Compounds 524

16.2.4.1 Frondosin B (C–H Alkenylation of Benzofuran) 524

16.2.4.2 Diptoindonesin G (C–H Arylation of Benzofuran) 525

16.2.4.3 Lithospermic Acid (Formation of Dihydrobenzofuran Using C–H Alkylation) 526

16.2.4.4 Lithospermic Acid (Formation of Dihydrobenzofuran Using C–H Insertion and C–H Alkenylation at the C4 Position of Dihydrobenzofuran) 526

16.2.4.5 Morphine (Intramolecular C–H Insertion to Dihydrobenzofuran) 527

16.2.5 Imidazoles, Oxazoles,Thiazoles, and Related Compounds 528

16.2.5.1 JNK3 Inhibitors (C–H Alkylation of Imidazoles) 528

16.2.5.2 Tyrosine Kinase Inhibitor (C–H Arylation of Imidazoles) 529

16.2.5.3 Texaline, Febuxostat, and Muscoride A (C–H Arylation of Oxazoles or Thiazoles) 531

16.2.5.4 Annuloline and Siphonazole B (C–H Alkenylation of Oxazoles at the C2 Position) 534

16.2.6 Quinazolines and Related Compounds 535

16.2.6.1 Luotonin B (Intramolecular C–H Arylation of Quinazoline) 535

16.2.6.2 Vasicoline (C–H Alkylation of Quinazoline) 535

16.2.7 Quinolines, Isoquinolines, Phenanthridines, and Related Compounds 536

16.2.7.1 Norchelerythrine (Intramolecular C–H Arylation) 536

16.2.7.2 Nitidine and NK 109 (Catellani-Type C–H Arylation/N-Arylation) 536

16.2.7.3 LTB4 Antagonist and MCH-1R Receptor Modulator (sp3 C–H Arylation/Intramolecular C–H Amination) 537

16.2.7.4 Tipifarnib (C–H Alkenylation and Cyclization) 537

16.2.7.5 Oxychelerythrine (C–H Alkenylation and Annulation) 538

16.2.8 Pyridines and Related Compounds 539

16.2.8.1 Sodium Channel Inhibitor and Antimalarial Agent (C–H Arylation of Pyridines at the C2 Position) 539

16.2.8.2 Complanadine A and B (C–H Borylation of Pyridine at C3 Position or C–H Arylation of Pyridines at C2 Position) 539

16.2.8.3 Anabashine (C–H Arylation of Iminopyridium Ylides) 540

16.2.8.4 Preclamol (C–H Arylation of Pyridine at the C3 Position) 542

16.2.9 Other Heterocycles 542

16.2.9.1 Celecoxib (C–H Arylation of Pyrazoles) 542

16.2.9.2 GABA 2/3 Agonist (C–H Arylation of Imidazopyrimidines) 543

16.2.9.3 Nigellidine Hydrobromide, YD-3, and YC-1 (C–H Arylation of Indazoles) 543

16.2.9.4 Pseudoheliotridane (Formation of Pyrrolidines Using sp3 C–H Insertion) 544

16.2.9.5 Aeruginosin (sp3 C–H Alkenylation and Arylation) 545

16.3 Summary 546

References 547

Index 551

Authors

Xiao-Feng Wu