Following an introductory chapter, part one focuses on understanding welding stress and distortion, with chapters on such topics as computational welding mechanics, modelling the effect of phase transformations on welding stress and distortion and using computationally efficient reduced-solution methods to understand welding distortion. Part two covers different methods of minimizing welding distortion. Chapters discuss methods such as differential heating for minimizing distortion in welded stiffeners, dynamic thermal tensioning, reverse-side heating and ways of minimizing buckling such as weld cooling and hybrid laser arc welding.
With its distinguished editor and international team of contributors, Minimization of welding distortion and buckling is an essential reference for all welders and engineers involved in fabrication of metal end-products, as well as those in industry and academia with a research interest in the area.
Table of Contents
Contributor contact details
Part 1: Understanding welding residual stress and distortion
Chapter 1: Introduction to welding residual stress and distortion
Chapter 2: Understanding welding stress and distortion using computational welding mechanics
Chapter 3: Modelling the effects of phase transformations on welding stress and distortion
Chapter 4: Modelling welding stress and distortion in large structures
Chapter 5: Using computationally efficient, reduced-solution methods to understand welding distortion
Part II: Minimizing welding distortion
Chapter 6: Minimization of bowing distortion in welded stiffeners using differential heating
Chapter 7: Minimizing buckling distortion in welding by thermal tensioning methods
Chapter 8: Minimizing buckling distortion in welding by weld cooling
Chapter 9: Minimizing buckling distortion in welding by hybrid laser-arc welding
Chapter 10: Minimizing angular distortion in welding by reverse-side heating
Index