The highly experienced editor and a team of leading experts review the promising and enabling aspects of this exciting materials class, covering the design, synthesis and/or fabrication, properties and applications. The broad topical scope includes organic polymers, liquid crystals, gels, stimuli-responsive surfaces, hybrid membranes, metallic, semiconducting and carbon nanomaterials, thermoelectric materials, metal-organic frameworks, luminescent and photochromic materials, and chiral and self-healing materials.
For materials scientists, nanotechnologists as well as organic, inorganic, solid state and polymer chemists.
Table of Contents
Preface xiii
1 Controllable Self-Assembly of One-Dimensional Nanocrystals 1
Shaoyi Zhang, Yang Yang, and Zhihong Nie
1.1 Introduction 1
1.2 Assembly Strategies 2
1.2.1 Templated Assembly 2
1.2.1.1 Geometrically Patterned Template 2
1.2.1.2 Chemically Patterned Template 4
1.2.2 Field-Driven Assembly 7
1.2.2.1 Assembly under Electric Field 7
1.2.2.2 Magnetic Field 10
1.2.2.3 Flow Field 12
1.2.3 Assembly at Interfaces and Surface 13
1.2.3.1 Liquid–Liquid Interface 14
1.2.3.2 Liquid–Air Interface 15
1.2.3.3 Evaporation-Mediated Assembly on Solid Surface 17
1.2.4 Ligand-Guided Assembly 19
1.2.4.1 Small Molecules 19
1.2.4.2 Polymeric Species 21
1.2.4.3 Biomolecular Ligand 23
1.3 Properties and Applications 25
1.4 Perspectives and Challenges 28
References 29
2 Self-Assembled Graphene Nanostructures and Their Applications 39
Dingshan Yu, Zhongke Yuan, Xiaofen Xiao, and Quan Li
2.1 Introduction 39
2.2 State-of-the-Art Self-Assembly Strategies of Graphene Nanostructures 40
2.2.1 Langmuir–Blodgett (LB) Method 40
2.2.2 Layer-by-Layer (LbL) Assembly Method 42
2.2.3 Flow-, Evaporation-, and Interface-Induced Self-Assembly 43
2.2.4 Template-Directed Self-Assembly and Hydrothermal Processes 45
2.2.5 Spin- and Space-Confinement Self-Assembly 46
2.2.6 Composites with Carbon Nanomaterials 49
2.2.7 Composites with Polymers 51
2.2.8 Composites with Metal or Metal Compounds 53
2.3 Applications of Self-Assembled Graphene Nanostructures 57
2.3.1 Optoelectronics and Photocatalysis 57
2.3.2 Electrochemical Energy Storage 59
2.3.3 Electrocatalysis 60
2.4 Outlook 61
References 62
3 Photochromic Organic and Hybrid Self-Organized Nanostructured Materials: From Design to Applications 75
Ling Wang and Quan Li
3.1 Introduction 75
3.2 Photochromic Organic and Hybrid Nanoparticles 76
3.2.1 Noble Metal Nanoparticles with Photochromic Molecules 77
3.2.2 Fluorescent Nanoparticles with Photochromic Molecules 81
3.2.3 Mesoporous Silica Nanoparticles with Photochromic Molecules 83
3.3 Photochromic Carbon-Based Nanomaterials 87
3.3.1 Carbon Nanotubes with Photochromic Molecules 87
3.3.2 Graphene Derivatives with Photochromic Molecules 90
3.4 Photochromic Chiral Liquid-Crystalline Nanostructured Materials 91
3.4.1 Cholesteric Liquid-Crystalline Superstructures 93
3.4.2 Liquid-Crystalline Blue Phase Superstructures 97
3.4.3 Liquid-Crystalline Microshells and Microdroplets 98
3.5 Summary and Perspective 100
Acknowledgments 101
References 101
4 Photoresponsive Host–Guest Nanostructured Supramolecular Systems 113
Da-Hui Qu,Wen-ZhiWang, and He Tian
4.1 Introduction 113
4.2 Photoresponsive Supramolecular Polymers andTheir Assemblies 114
4.2.1 Supramolecular Interactions in the Main Chain 115
4.2.2 Supramolecular Interactions in the Side Chain 133
4.2.3 Supramolecular Complexations as Cross-Linkers between Branched Polymer Chains 139
4.2.4 Photoresponsive Supramolecular Micelles, Vesicles, and Other Assemblies 140
4.3 Photoresponsive Host–Guest Systems Immobilized on Surfaces 148
4.4 Conclusions and Prospects 157
Acknowledgments 157
Abbreviations 157
References 158
5 ;;-Electronic Ion-Pairing Assemblies Providing Nanostructured Materials 165
Yohei Haketa and Hiromitsu Maeda
5.1 Introduction 165
5.2 Nanostructures Based on Self-Assembling π-Electronic Charged Species 167
5.2.1 Formation of Nanofibers 167
5.2.2 Formation of Nanotubes and Others 172
5.3 Ionic Liquid Crystals Based on π-Electronic Charged Species 175
5.4 Assemblies Based on Genuine π-Electronic Ions 177
5.5 Ion-Pairing Assemblies Based on π-Electronic Anion-Responsive Molecules 184
5.5.1 Solid-State Assemblies Based on π-Electronic Anion-Responsive Molecules 184
5.5.2 Solid-State Assemblies of Receptor–Anion Complexes 186
5.5.3 Ion-Pairing Supramolecular Gels 186
5.5.4 Ion-Pairing Liquid Crystals Based on π-Electronic Charged Species 188
5.6 Conclusion 193
References 194
6 Stimuli-Responsive Nanostructured Surfaces for Biomedical Applications 203
Bárbara Santos Gomes and Paula M. Mendes
6.1 Introduction 203
6.2 Thin-Film Formation by Assembly on Surfaces 204
6.3 Lithographic Techniques 206
6.4 Electrically Driven Nanostructured Responsive Surfaces 209
6.5 Photodriven Nanostructured Responsive Surfaces 216
6.6 Thermo-Driven Nanostructured Responsive Surfaces 222
6.7 Chemically Controlled Nanostructured Surfaces 227
6.8 Concluding Remarks and Perspectives 234
References 235
7 Stimuli-Directed Self-Organized One-Dimensional Organic Semiconducting Nanostructures for Optoelectronic Applications 247
A.S. Achalkumar,Manoj Mathews, and Quan Li
7.1 Introduction to Discotic Liquid Crystals 247
7.2 Application of Columnar Phases in Organic Electronics 250
7.3 Alignment of Col LC Phases through Different Stimuli 253
7.3.1 Alignment Control by Molecular Design 255
7.3.2 Alignment Control of Columnar Phase through Physical Methods 262
7.3.2.1 Surface Treatment 262
7.3.2.2 Langmuir–Blodgett (LB) Deposition 266
7.3.2.3 Application of Self-Assembled Monolayers 269
7.3.2.4 Application of Chemically Modified Surfaces and Dewetting 273
7.3.2.5 Application of Sacrificial Layer 276
7.3.2.6 Alignment in Nanopores and Nanogrooves 277
7.3.2.7 Zone Casting 281
7.3.2.8 Zone Melting 282
7.3.2.9 Dip Coating, Solvent Vapor Annealing, and Solvent-Induced Precipitation 283
7.3.2.10 Magnetic-Field-Induced Alignment 287
7.3.2.11 Electric-Field-Induced Alignment 288
7.3.2.12 Photoalignment by Infrared Irradiation 290
7.3.2.13 Other Alignment Techniques 291
7.4 Conclusions and Perspective 293
References 295
8 Stimuli-Directed Helical Axis Switching in Chiral Liquid Crystal Nanostructures 307
Rafael S. Zola and Quan Li
8.1 Introduction 307
8.2 Self-Organized Chiral Nematic LCs 308
8.3 Field-Induced Helical Axis Switching: Dielectric/Magnetic Torque and Flexoelectric Effect 311
8.4 Optically Driven Helical Axis Switching 319
8.5 Confinement Mediated Helical Axis Change 328
8.6 Helical Axis Switching in CLC Polymer Composites 339
8.7 Summary and Outlook 345
References 346
9 Electrically Driven Self-Organized Chiral Liquid-Crystalline Nanostructures: Organic Molecular Photonic Crystal with Tunable Bandgap 359
Suman K. Manna, Thomas F. George, and Guoqiang Li
9.1 Introduction 359
9.1.1 Photonic Crystal 359
9.1.2 Photonic Bandgap 359
9.1.3 Light Propagation in 1D Photonic Bandgap Medium 361
9.2 Self-Assembled Photonic Crystals 362
9.2.1 Opal Structure 363
9.2.2 Cholesteric Liquid Crystal 363
9.2.2.1 Liquid Crystal 364
9.2.2.2 Nonchiral Liquid-Crystalline Phase 364
9.2.2.3 Chiral Liquid-Crystalline Phase (Cholesteric) 365
9.3 Electric-Field-Induced, Self-Assembled, Tunable Photonic Crystals 366
9.3.1 Self-Assembled Tunable Opal 367
9.3.2 Electric-Field-Induced, Self-Assembled, Tunable CLC 367
9.3.3 Transverse-Electric-Field-Induced Tunable CLCs 368
9.3.4 Polymer-Stabilized Tunable CLCs 371
9.3.5 Lower Elastic Constant LC Host 373
9.3.6 Negative LC Host 374
9.4 Conclusions 377
Acknowledgments 378
References 378
10 Nanostructured Organic–Inorganic Hybrid Membranes for High-Temperature Proton Exchange Membrane Fuel Cells 383
Jin Zhang and San Ping Jiang
10.1 Introduction 383
10.2 Nanostructured Nafion-Based Hybrid Membranes 386
10.2.1 Nafion Hybrid Membrane Based on Metal Oxides 387
10.2.1.1 Casting Method 388
10.2.1.2 In situ Sol–Gel Method 391
10.2.1.3 Liquid-Phase Deposition Method 393
10.2.2 Nafion Hybrid Membrane Based on Proton Conductors 394
10.3 Hydrocarbon Polymer-Based Hybrid Membranes 394
10.4 Nanostructured PBI-Based Hybrid Membranes 396
10.4.1 Addition of Non-proton Conductors 398
10.4.2 Conductive Inorganic Fillers 400
10.4.2.1 Functionalization of Inorganic Fillers 400
10.4.2.2 Proton-Conductor-Incorporated Inorganic Fillers 402
10.5 Alternative PA-Doped Hybrid Membranes 404
10.6 Conclusions and Outlook 405
Acknowledgment 408
References 408
11 Two-Dimensional Organic and Hybrid Porous Frameworks as Novel Electronic Material Systems: Electronic Properties and Advanced Energy Conversion Functions 419
Ken Sakaushi
11.1 Introduction 419
11.2 Electronic Function Control in Two-Dimensional Organic and Hybrid Porous Frameworks 422
11.3 Electronic Functions in 2D Organic Frameworks and Applications 424
11.4 Electronic Functions in Two-Dimensional Hybrid Porous Frameworks and Applications 433
11.5 Concluding Remarks 437
Acknowledgments 439
References 439
12 Organic/Inorganic Hybrid Nanostructured Materials for Thermoelectric Energy Conversion 445
Yucheng Lan, XiaomingWang, ChundongWang, and Mona Zebarjadi
12.1 Introduction 445
12.1.1 Inorganic Thermoelectric Materials 447
12.1.2 Organic Thermoelectric Materials 449
12.1.3 HybridThermoelectric Nanostructured Composites 453
12.2 Organic/Inorganic Thermoelectric Nanostructured Materials 454
12.2.1 PEDOT Hybrid Nanocomposites 455
12.2.2 PANI Hybrid Nanostructured Composites 458
12.2.3 CNT/Polymer Nanostructured Composites 460
12.2.3.1 CNT/PVAc Composites 461
12.2.3.2 CNT/PANI Nanostructured Composites 462
12.2.3.3 CNT/PEDOT:PSS Nanostructured Composites 464
12.2.3.4 CNT/Bi2Te3 Nanostuctured Composites 465
12.2.3.5 Three-Component CNT Nanostructured Composites 465
12.2.4 Other Hybrid Nanostructured Composites 467
12.2.4.1 P3OT Hybrid Nanocomposites 467
12.2.4.2 PTH Hybrid Nanocomposites 468
12.2.4.3 PPy Hybrid Nanocomposites 468
12.2.4.4 PC Hybrid Nanocomposites 468
12.2.4.5 PHT Hybrid Nanocomposites 468
12.2.4.6 PPT Hybrid Nanocomposites 468
12.2.4.7 P3HT Hybrid Nanocomposites 468
12.2.4.8 PA Hybrid Nanocomposites 469
12.3 Surface-Transfer Doping of Organic/Inorganic Thermoelectric Nanocomposites 469
12.4 Outlook 472
Abbreviations 473
References 473
13 Hybrid Organic–Nitride Semiconductor Nanostructures for Biosensor Applications 485
Paul Bertani and Wu Lu
13.1 Introduction 485
13.2 AlGaN/GaN Functionality and Active Region 487
13.3 Device Fabrication 491
13.4 Au-Linking and Thiol Group Employment 492
13.5 Oxidation of Nitride Surfaces in Preparation for Functionalization 494
13.6 Silanization of Oxidized Nitride Surfaces 497
13.7 DNA Immobilization and Hybridization 500
13.8 Biotin–Streptavidin 504
13.9 ImmunoFETs 507
13.10 Summary and Outlook 511
References 512
14 Polymer–Nanomaterial Composites for Optoacoustic Conversion 519
Taehwa Lee, HyoungWon Baac, Jong G. Ok, and L. Jay Guo
14.1 Introduction 519
14.2 Optoacoustic Conversion in Nanomaterials 520
14.2.1 Fundamentals of Optoacoustic Generation 520
14.2.2 Heat Transfer from the Nanomaterial Absorber to the Surrounding Polymer 521
14.3 Polymer–Nanomaterial Composite for Optoacoustic Conversion 522
14.3.1 Polymer Materials with Light-Absorbing Carbon Fillers 522
14.3.1.1 Carbon Nanotube (CNT) Composite 523
14.3.1.2 Other Carbon-Based Composites 523
14.3.2 Metal-Based Polymer Composites 527
14.3.2.1 Polymer–Metal Nanoparticle Composites 528
14.3.2.2 Polymer–Metal Film Composites 529
14.3.3 Performance Comparison 531
14.4 Applications of Optoacoustic Conversion in Nanocomposites 531
14.4.1 Optoacoustic Generation of Focused Ultrasound for Therapeutic Applications 531
14.4.2 Optoacoustic Generation in Polymer Composites for Ultrasound Imaging 537
14.4.3 CNT–PDMS Composite for Real-Time Terahertz Detection 539
14.5 Outlook and Future Direction 541
14.5.1 New High-Efficiency Optoacoustic Composites with Mechanical Robustness 541
14.5.2 New Optoacoustic Applications 543
References 544
15 Functional Nanostructured Conjugated Polymers 547
Satoshi Matsushita, Benedict San Jose, and Kazuo Akagi
15.1 Introduction 547
15.1.1 Circularly Polarized Luminescence 547
15.1.2 CPL in Conjugated Polymers 547
15.1.3 CPL with High gem Using Selective Reflection Property of N∗-LCs 548
15.1.4 Dynamic Switching of CPL 549
15.1.5 Chirality Transfer and Chiral Transcription 549
15.1.6 Polyacetylenes 550
15.2 DiLCPAs with Blue and Green LPL 551
15.2.1 Liquid Crystallinity of diLCPAs 552
15.2.2 Linearly Polarized Luminescence of diLCPAs 553
15.3 Lyotropic N∗ diLCPAs with Green CPL 554
15.3.1 Liquid Crystallinity of diLCPAs 555
15.3.2 Circularly Polarized Luminescence of diLCPAs 557
15.4 Dynamic Switching of CPL by Selective Reflection through a Thermotropic N∗-LC 558
15.4.1 Preparation of N∗-LC Cells 559
15.4.2 Dynamic Switching of CPL 559
15.5 Liquid-Crystallinity-Enforced Chirality Transfer from Chiral MonoLCPA to Achiral LCPPE 561
15.5.1 Liquid Crystallinity of MonoPAs 563
15.5.2 Chirality of MonoPAs 565
15.5.3 Chirality Transfer from Chiral MonoLCPA to Achiral LCPPE 566
15.6 Conclusions and Outlook 567
Acknowledgments 568
References 569
16 Nanostructured Self-Organized Heliconical Nematic Liquid Crystals: Twist-Bend Nematic Phase 575
Hari K. Bisoyi and Quan Li
16.1 Introduction 575
16.1.1 Liquid Crystals 575
16.1.2 Twist-Bend Nematic (Ntb) Phase 578
16.2 Characterization of Ntb Phase 581
16.3 Ntb Phase in Different Classes of Liquid Crystal Compounds 583
16.3.1 Ntb Phase in a Bent-Core Compound 583
16.3.2 Ntb Phase in Dimers 585
16.3.2.1 Methylene-Linked Dimers 585
16.3.2.2 Ether-Linked Dimers 594
16.3.2.3 Imino-Linked Dimers 595
16.3.2.4 Other Dimers 597
16.3.3 Ntb Phase in Trimers 600
16.3.4 Ntb Phase in Tetramers 603
16.4 Ntb Phase in Mixtures 604
16.5 Heliconical Cholesteric Phase 606
16.6 Summary and Outlook 609
References 610
Index 623