- Includes contributions from leading cellulose scientists worldwide, with five Anselm Payen Cellulose Award winners and two Hayashi Jisuke Cellulose Award winners
- Deals with a highly applicable and timely topic, considering the current activities in the fields of bioeconomies, biorefineries, and biomass utilization
- Maximizes readership by combining fundamental science and application development
Table of Contents
Author Biography xv
List of Contributors xvii
Preface xxiii
Acknowledgements xxv
1 Aminocelluloses - Polymers with Fascinating Properties and Application Potential 1
Thomas Heinze, Thomas Elschner, and Kristin Ganske
1.1 Introduction 1
1.2 Amino-/ammonium Group Containing Cellulose Esters 2
1.2.1 (3-Carboxypropyl)trimethylammonium Chloride Esters of Cellulose 2
1.2.2 Cellulose-4-(N-methylamino)butyrate (CMABC) 7
1.3 6-Deoxy-6-amino Cellulose Derivatives 9
1.3.1 Spontaneous Self-assembling of 6-Deoxy-6-amino Cellulose Derivatives 10
1.3.2 Application Potential of 6-Deoxy-6-amino Cellulose Derivatives 13
1.4 Amino Cellulose Carbamates 21
1.4.1 Synthesis 21
1.4.2 Properties 22
Acknowledgment 24
References 24
2 Preparation of Photosensitizer-bound Cellulose Derivatives for Photocurrent Generation System 29
Toshiyuki Takano
2.1 Introduction 29
2.2 Porphyrin-bound Cellulose Derivatives 31
2.3 Phthalocyanine-bound Cellulose Derivatives 34
2.4 Squaraine-bound Cellulose Derivative 40
2.5 Ruthenium(II) Complex-bound Cellulose Derivative 42
2.6 Fullerene-bound Cellulose Derivative 44
2.7 Porphyrin-bound Chitosan Derivative 45
2.8 Conclusion 47
References 47
3 Synthesis of Cellulosic Bottlebrushes with Regioselectively Substituted Side Chains and Their Self-assembly 49
Keita Sakakibara, Yuji Kinose, and Yoshinobu Tsujii
3.1 Introduction 49
3.2 Strategy for Accomplishing Regioselective Grafting of Cellulose 52
3.3 Regioselective Introduction of the First Polymer Side Chain 55
3.3.1 Introduction of Poly(styrene) at O-2,3 Position of 6-O-p-Methoxytritylcellulose (1) 55
3.3.2 Introduction of Poly(ethylene oxide) at O-2,3 Position of 6-O-p-Methoxytritylcellulose (1) 57
3.4 Regioselective Introduction of the Second Polymer Side Chain 58
3.4.1 Introduction of Poly(styrene) at O-6 Position of 2,3-di-O-PEO Cellulose (5) via Grafting-from Approach 58
3.4.2 Introduction of Poly(styrene) at O-6 Position of 2,3-di-O-PEO Cellulose (5) via Grafting to Approach Combining Click Reaction 58
3.5 SEC-MALLS Study 61
3.6 Summary and Outlook 64
Acknowledgments 64
References 64
4 Recent Progress on Oxygen Delignification of Softwood Kraft Pulp 67
Adriaan R. P. van Heiningen, Yun Ji, and Vahid Jafari
4.1 Introduction and State-of-the-Art of Commercial Oxygen Delignification 67
4.2 Chemistry of Delignification and Cellulose Degradation 70
4.3 Improving the Reactivity of Residual Lignin 73
4.4 Improving Delignification/Cellulose Degradation Selectivity During
Oxygen Delignification 79
4.5 Improving Pulp Yield by Using Oxygen Delignification 90
4.6 Practical Implementation of High Kappa Oxygen Delignification 92
References 93
5 Toward a Better Understanding of Cellulose Swelling, Dissolution, and Regeneration on theMolecular Level 99
Thomas Rosenau, Antje Potthast, Andreas Hofinger,Markus Bacher, Yuko Yoneda, KurtMereiter, Fumiaki Nakatsubo, Christian Jäger, Alfred D. French, and Kanji Kajiwara
5.1 Introduction 99
5.2 Cellulose Swelling, Dissolution and Regeneration at the Molecular Level 102
5.2.1 The “Viewpoint of Cellulose” 109
5.2.2 The “Viewpoint of Cellulose Solvents” 113
5.3 Conclusion 118
References 120
6 Interaction ofWaterMolecules with Carboxyalkyl Cellulose 127
HitomiMiyamoto, Keita Sakakibara, IsaoWataoka, Yoshinobu Tsujii, Chihiro Yamane, and Kanji Kajiwara
6.1 Introduction 127
6.2 Carboxymethyl Cellulose (CMC) and Carboxyethyl Cellulose (CEC) 128
6.3 Differential Scanning Calorimetry (DSC) 131
6.4 Small-Angle X-ray Scattering (SAXS) 133
6.5 Molecular Dynamics 136
6.6 Chemical Modification and Biodegradability 138
Acknowledgments 140
References 140
7 Analysis of the Substituent Distribution in Cellulose Ethers - Recent Contributions 143
PetraMischnick
7.1 Introduction 143
7.2 Methyl Cellulose 146
7.2.1 Average DS and Methyl Pattern in the Glucosyl Unit 146
7.2.2 Distribution Along and Over the Chain 149
7.2.3 Summary 153
7.3 Hydroxyalkylmethyl Celluloses 153
7.3.1 Hydroxyethylmethyl Celluloses 159
7.3.2 Hydroxypropylmethyl Celluloses 160
7.3.3 Summary 165
7.4 Carboxymethyl Cellulose 166
7.5 Outlook 166
Acknowledgment 167
References 167
8 AdhesiveMixtures as Sacrificial Substrates in Paper Aging 175
Irina Sulaeva, Ute Henniges, Thomas Rosenau, and Antje Potthast
8.1 Introduction 175
8.2 Materials and Methods 177
8.2.1 Chemicals 177
8.2.2 Preparation of Adhesive Mixtures and Films from Individual Components 177
8.2.3 Preparation of Coated Paper Samples 177
8.2.4 Accelerated Heat-Induced Aging 179
8.2.5 GPC Analysis 179
8.2.6 Contact Angle Measurements 180
8.2.7 Analysis of Paper Brightness 180
8.3 Results and Discussion 180
8.3.1 GPC Analysis of Adhesive Mixtures and Individual Components 180
8.3.2 Molar Mass Analysis of Paper Samples 182
8.3.3 Contact Angle Analysis 184
8.3.4 UV-Vis Measurements of Paper Brightness 185
8.4 Conclusion 186
Acknowledgments 187
References 187
9 Solution-state NMR Analysis of Lignocellulosics in Nonderivatizing Solvents 191
Ashley J. Holding, AlistairW. T. King, and Ilkka Kilpeläinen
9.1 Introduction 191
9.2 Solution-state 2D NMR of Lignocellulose andWhole Biomass 195
9.3 Solution State 1D and 2D NMR Spectroscopy of Cellulose and Pulp 203
9.4 Solution-state NMR Spectroscopy of Modified Nanocrystalline Cellulose 211
9.5 Solution State 31P NMR Spectroscopy and Quantification of Hydroxyl Groups 212
9.6 Conclusions and Future Prospects 218
References 219
10 Surface Chemistry and Characterization of Cellulose Nanocrystals 223
Samuel Eyley, Christina Schütz, andWimThielemans
10.1 Introduction 223
10.2 Cellulose Nanocrystals 225
10.3 Morphological and Structural Characterization 228
10.3.1 Microscopy 228
10.3.2 Small Angle Scattering 230
10.3.3 Powder X-ray Diffraction 230
10.3.4 Solid-State NMR Spectroscopy 234
10.4 Chemical Characterization 237
10.4.1 Infrared Spectroscopy 237
10.4.2 Elemental Analysis 238
10.4.3 X-ray Photoelectron Spectroscopy 240
10.4.4 Other Methods 243
10.5 Conclusion 245
Acknowledgments 246
References 246
11 Some Comments on Chiral Structures fromCellulose 253
Derek G. Gray
11.1 Chirality and Cellulose Nanocrystals 253
11.2 Can CNC Form Nematic or Smectic-ordered Materials? 255
11.3 Why Do Some CNC Films Not Display Iridescent Colors? 256
11.4 IsThere Any Pattern to the Observed Expressions Of Chirality At Length Scales from the Molecular to the Macroscopic? 257
Acknowledgments 259
References 259
12 Supramolecular Aspects of Native Cellulose: Fringed-fibrillar Model, Leveling-off Degree of Polymerization and Production of Cellulose Nanocrystals 263
Eero Kontturi
12.1 Introduction 263
12.2 Fringed-fibrillarModel: Crystallographic, Spectroscopic, and Microscopic Evidence 264
12.3 Leveling-off Degree of Polymerization (LODP) 267
12.4 Preparation of Cellulose Nanocrystals (CNCs) 270
12.5 Conclusion 271
References 271
13 Cellulose Nanofibrils: FromHydrogels to Aerogels 277
Marco Beaumont, Antje Potthast, and Thomas Rosenau
13.1 Introduction 277
13.2 Cellulose Nanofibrils 278
13.3 Hydrogels 282
13.3.1 Cellulose Nanofibrils 284
13.3.2 Composites 288
13.3.3 Modification 293
13.4 Aerogels 296
13.4.1 Drying of Solvogels 297
13.4.2 Mechanical Properties 301
13.4.3 Conductive Aerogels 305
13.4.4 Hydrophobic Aerogels and Superabsorbents 307
13.4.5 Other Applications 315
13.5 Conclusion 317
Acknowledgments 318
References 318
14 High-performance Lignocellulosic Fibers Spun from Ionic Liquid Solution 341
Michael Hummel, AnneMichud, YiboMa, Annariikka Roselli, Agnes Stepan, Sanna Hellstén, Shirin Asaadi, and Herbert Sixta
14.1 Introduction 341
14.2 Materials and Methods 347
14.2.1 Pulp Dissolution and Filtration 348
14.2.2 Rheological Measurements 349
14.2.3 Chemical Composition Analysis 349
14.2.4 Molar Mass Distribution Analysis 349
14.2.5 Fiber Spinning 350
14.2.6 Mechanical Analysis of Fibers 351
14.3 Results and Discussion 351
14.3.1 Lignocellulosic Solutes 351
14.3.2 Rheological Properties 352
14.3.3 Fiber Spinning 354
14.3.4 Fiber Properties 355
14.3.5 Summary of the Influence of Noncellulosic Constituents on the Fiber Properties 360
14.4 Conclusion 361
References 362
15 Bio-based Aerogels: A New Generation of Thermal Superinsulating Materials 371
Tatiana Budtova
15.1 Introduction 371
15.2 Cellulose I Based Aerogels andTheir Composites 373
15.3 Cellulose II Based Aerogels and Their Composites 378
15.4 Pectin-based Aerogels and Their Composites 380
15.5 Starch-based Aerogels 386
15.6 Alginate Aerogels 386
15.7 Conclusions and Prospects 387
References 388
16 Nanocelluloses at the Oil-Water Interface: Emulsions Toward Function and Material Development 393
Siqi Huan, Mariko Ago, MaryamBorghei, and Orlando J. Rojas
16.1 Cellulose Nanocrystal Properties in the Stabilization of O/W Interfaces 393
16.2 Surfactant-free Emulsions 395
16.3 Emulsions Stabilized with Modified Nanocelluloses 398
16.4 Surfactant-assisted Emulsions 402
16.5 Emulsions with Polymer Coemulsifiers 406
16.6 Double Emulsions 409
16.7 Emulsion or Emulsion-precursor Systems with Stimuli-responsive Behavior 413
16.8 Closing Remarks 418
Acknowledgments 418
References 418
17 Honeycomb-patterned Cellulose as a Promising Tool to InvestigateWood CellWall Formation and Deformation 423
Yasumitsu Uraki, Liang Zhou, Qiang Li, Teuku B. Bardant, and Keiichi Koda
17.1 Introduction 423
17.2 Theory of Honeycomb Deformation 425
17.3 HPRC with Cellulose II Polymorphism andTheir Tensile Strength 426
17.4 Validity of Deformation Models 428
17.5 Deposition of Wood Cell Wall Components on the Film of HPBC Film 430
Acknowledgment 432
References 433
Index 435