+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Insect Biodiversity. Science and Society, Volume 2. Edition No. 1

  • Book

  • 1024 Pages
  • May 2018
  • John Wiley and Sons Ltd
  • ID: 4398448

Volume Two of the new guide to the study of biodiversity in insects

Volume Two of Insect Biodiversity: Science and Society presents an entirely new, companion volume of a comprehensive resource for the most current research on the influence insects have on humankind and on our endangered environment. With contributions from leading researchers and scholars on the topic, the text explores relevant topics including biodiversity in different habitats and regions, taxonomic groups, and perspectives.

Volume Two offers coverage of insect biodiversity in regional settings, such as the Arctic and Asia, and in particular habitats including crops, caves, and islands. The authors also include information on historical, cultural, technical, and climatic perspectives of insect biodiversity.

This book explores the wide variety of insect species and their evolutionary relationships. Case studies offer assessments on how insect biodiversity can help meet the needs of a rapidly expanding human population, and examine the consequences that an increased loss of insect species will have on the world. This important text:

  • Offers the most up-to-date information on the important topic of insect biodiversity
  • Explores vital topics such as the impact on insect biodiversity through habitat loss and degradation and climate change
  • With its companion Volume I, presents current information on the biodiversity of all insect orders
  • Contains reviews of insect biodiversity in culture and art, in the fossil record, and in agricultural systems
  • Includes scientific approaches and methods for the study of insect biodiversity

The book offers scientists, academics, professionals, and students a guide for a better understanding of the biology and ecology of insects, highlighting the need to sustainably manage ecosystems in an ever-changing global environment.

Table of Contents

List of Contributors xxiii

Foreword xxix

Preface, Volume II xxxiii

Acknowledgments xxxv

1 Introduction – A Brief History of Revolutions in the Study of Insect Biodiversity 1
Peter H. Adler and Robert G. Foottit

1.1 Discovery 1

1.2 Conceptual Development 5

1.3 Information Management 6

1.4 Conclusions 7

Acknowledgments 8

References 8

Part I Habitats and Regions 13

2 Insect Biodiversity in the Arctic 15
Ian D. Hodkinson

2.1 Documenting Biodiversity – Traditional Taxonomy Versus DNA Barcoding 17

2.2 Insect Species Diversity in the Arctic 18

2.2.1 Composition of the Arctic Insect Fauna 18

2.2.2 Species Richness Trends Along Latitudinal Gradients 25

2.2.3 Geographical and Regional Variations in Species Richness 27

2.2.4 Diversity Oases Within the Arctic 28

2.3 Historical Insect Biodiversity in the Arctic – the Time Perspective 29

2.3.1 Nunataks and Glacial Refugia as Generators of Biodiversity 30

2.3.2 Endemism 31

2.4 Biodiversity on the Landscape Scale 32

2.4.1 Variation in Biodiversity on a Landscape Scale 32

2.4.2 Local Effects on Biodiversity – Predation and Natural Disturbance 34

2.5 Important Characteristics of Arctic Insect Biodiversity 35

2.5.1 Specialist Versus Generalist Species 35

2.5.2 Life‐History Adaptation 35

2.5.3 Genetic Diversity Within Species and Groups 36

2.5.4 Reproductive Variation and Parthenogenesis 36

2.5.5 A Diversity of Adaptations for Maximizing Heat Absorption 37

2.6 Cold Tolerance – a Diversity of Adaptations 38

2.6.1 Brachyptery and Wing Polymorphism 39

2.7 Dispersal, Immigration, and Biodiversity 39

2.8 Pollinator Networks and Pollinator Biodiversity 40

2.9 A Biodiversity Paradise for Parasites? 41

2.10 Biodiversity and the Changing Arctic Climate 42

References 44

3 Insect Biodiversity in Indochina: A Window into the Riches of the Oriental Region 59
Seunghwan Lee and Ram Keshari Duwal

3.1 Physical Geography and Climate 62

3.2 Features of Insect Biodiversity in the Lower Mekong Subregion 62

3.2.1 Blattodea 70

3.2.2 Coleoptera 70

3.2.3 Dermaptera 71

3.2.4 Diptera 72

3.2.5 Embiodea 72

3.2.6 Ephemeroptera 72

3.2.7 Hemiptera 72

3.2.8 Hymenoptera 72

3.2.9 “Isoptera” 72

3.2.10 Lepidoptera 72

3.2.11 Mantodea 73

3.2.12 Mecoptera 73

3.2.13 Megaloptera 73

3.2.14 Microcoryphia and Zygentoma 73

3.2.15 Neuroptera 73

3.2.16 Notoptera (Grylloblattodea and Mantophasmatodea) 73

3.2.17 Odonata 73

3.2.18 Orthoptera 73

3.2.19 Phasmatodea 73

3.2.20 Phthiraptera 73

3.2.21 Plecoptera 74

3.2.22 Psocoptera 74

3.2.23 Raphidioptera 74

3.2.24 Siphonaptera 74

3.2.25 Strepsiptera 74

3.2.26 Thysanoptera 74

3.2.27 Trichoptera 74

3.2.28 Zoraptera 74

3.3 Insect Biodiversity and Society in Indochina 74

3.3.1 Entomophagy in the Lower Mekong Subregion 74

3.3.2 Research Initiatives 76

3.4 Conclusions 77

Acknowledgments 78

References 78

4 Biodiversity of Arthropods on Islands 81
Rosemary G. Gillespie and Kipling Will

4.1 What is an Island? 81

4.1.1 History of the Island 82

4.1.2 Degree of Isolation 84

4.1.3 Area of the Island 84

4.1.4 Age of the Island 85

4.2 Ecological Attributes of Islands 85

4.2.1 Species Diversity on Islands 85

4.2.2 Island Colonization 86

4.2.3 Factors Facilitating Establishment 86

4.2.4 Niche Preemption 86

4.2.5 Ecological Release 87

4.2.6 Networks of Ecological Interactions 87

4.3 Evolution on Islands 87

4.3.1 Anagenesis 87

4.3.2 Cladogenesis 87

4.3.3 Adaptive Radiation 88

4.3.4 Isolation, Hybridization, and Admixture 88

4.3.5 Parallel Evolution and Convergence 89

4.4 Evolution in Other Insular Environments 89

4.4.1 Mountaintops – Sky Islands 89

4.4.2 Caves 89

4.4.3 Desert Dunes and Salt Lakes 89

4.4.4 Habitat Fragments 90

4.5 Characteristics of Island Biodiversity 90

4.5.1 Disharmony 90

4.5.2 Endemism 91

4.5.3 Loss of Dispersal Ability and Flightlessness 91

4.5.4 Innovations 91

4.5.5 Size 92

4.5.6 Reproductive Shifts 92

4.6 Conservation 92

4.6.1 Taxonomic Impediments 93

4.6.2 Restricted Ranges and Small Population Sizes 93

4.6.3 Abiotic Factors 93

4.6.4 Invasive Species 94

4.7 Conclusion 94

References 94

5 Beneficial Insects in Agriculture: Enhancement of Biodiversity and Ecosystem Services 105
Matthew S. Jones and William E. Snyder

5.1 Components of Biodiversity: Species Richness, Species Evenness, and Species Identity 106

5.2 Why Does Insect Biodiversity Matter to Agriculture? 106

5.2.1 Complementarity 107

5.2.1.1 Temporal Complementarity 107

5.2.1.2 Spatial Complementarity 108

5.2.1.3 Behavioral Complementarity 109

5.2.2 Identity Effects in Pollinator, Predator, and Detritivore Communities 110

5.2.3 Disruptive Species Interactions in Diverse Communities 111

5.3 Degradation of Biodiversity Through Agricultural Intensification, and Its Reversal 112

5.4 Restoring Biodiversity to Agroecosystems 112

5.4.1 Restoring Key Resources 112

5.4.2 Optimizing Use of Pesticides 113

5.4.3 Diversifying Farming Landscapes at Larger Scales 113

5.5 Conclusions and Recommendations 115

5.5.1 Clarify Mechanisms Leading to Biodiversity Effects 115

5.5.2 Consider Biodiversity Effects That Span Multiple Ecosystem Services 115

5.5.3 Better Link Management Practices to Beneficial Biodiversity Effects 115

5.5.4 Rank the Relative Importance of Habitat Loss Versus Agrochemical Use 116

5.5.5 Elucidate Strategies That Facilitate Transition from Current Agricultural Production Practices to Those That Are Sustainable and Provide Improved Ecosystem

Services 116

5.6 Summary 116

Acknowledgments 117

References 117

6 Insects in Caves 123
David C. Culver and Tanja Pipan

6.1 The Story of Leptodirus hochenwartii 123

6.2 The Variety of Subterranean Spaces 124

6.2.1 Overview 124

6.2.2 Caves 125

6.2.3 Soil and Interstitial Habitats 126

6.2.4 Shallow Subterranean Habitats 127

6.2.4.1 Epikarst 128

6.2.4.2 Milieu Souterrain Superficiel 128

6.2.4.3 Calcrete Aquifers 128

6.2.4.4 Unifying Features of Shallow Subterranean Habitats 130

6.3 Ecological Roles of Insects in Caves 133

6.3.1 Relative Importance of Subterranean Habitats in the Ecology of Different Insects 133

6.3.2 Trophic Roles 134

6.4 Morphological and Life‐History Adaptations of Insects to Subterranean Life 134

6.5 Probable Modes of Successful Colonization of Subterranean Space 138

6.5.1 Initial Colonization 140

6.5.2 Successful Colonization 140

6.5.3 Allopatric Versus Parapatric Speciation 141

6.5.4 Subterranean Dispersal 142

6.6 Taxonomic and Geographic Patterns of Subterranean Insect Biodiversity 142

6.6.1 Geographic Patterns 142

6.6.2 Taxonomic Review of Troglobiotic Insects 143

6.6.2.1 Collembola 144

6.6.2.2 Diplura 146

6.6.2.3 Coleoptera 146

6.6.2.4 Fulgoromorpha 147

6.7 Human Utility and Protection of Cave Insects 147

References 147

Part II Taxa 153

7 Biodiversity of the Thysanurans (Microcoryphia and Zygentoma) 155
Luis F. Mendes

7.1 Paleontological Data 159

7.2 Parasitism 167

7.2.1 Unicellular Parasites 167

7.2.2 Nematoda 167

7.2.3 Acarids 167

7.2.4 Strepsiptera 167

7.2.5 Fungi 167

7.3 Predation 168

7.4 Order Microcoryphia (= Archaeognatha) 168

7.4.1 Characterization 168

7.4.2 Bionomics 172

7.4.3 Taxonomy 173

7.4.4 Identification Key for Families, Subfamilies, and Paleoforms of Microcoryphia 174

7.5 Order Zygentoma (= Thysanura Sensu Stricto) 175

7.5.1 Characterization 175

7.5.2 Bionomics 179

7.5.3 Taxonomy 180

7.5.4 Identification Key for Families and Subfamilies of Zygentoma 181

7.6 Genetic Studies of Thysanurans 183

7.7 Thysanurans and Humans 184

7.8 Geographic Distribution of the Thysanurans 185

References 187

8 Biodiversity of Zoraptera and Their Little‐Known Biology 199
Jae C. Choe

8.1 Morphology 201

8.2 Life History and Ecology 204

8.3 Reproduction 208

8.4 Phylogenetic Position – “The Zoraptera Problem” 210

8.5 Conclusion 211

Acknowledgments 212

References 212

9 Biodiversity of Embiodea 219
Janice S. Edgerly

9.1 Diversity in Habitat and Silk 223

9.2 The Promise of Silk‐Like Biomaterials and Emerging Lessons from Webspinners 228

9.3 Social Behavior 229

9.4 Families of Embiodea 231

9.4.1 Andesembiidae 231

9.4.2 Anisembiidae 232

9.4.3 Archembiidae 233

9.4.4 Australembiidae 234

9.4.5 Clothodidae 234

9.4.6 Embiidae 235

9.4.7 Embonychidae 236

9.4.8 Notoligotomidae 236

9.4.9 Oligotomidae 236

9.4.10 Paedembiidae 238

9.4.11 Ptilocerembiidae 238

9.4.12 Scelembiidae 238

9.4.13 Teratembiidae 239

9.5 Webspinners of the Fossil Record 239

9.6 Conclusion 239

References 240

10 Biodiversity of Orthoptera 245
Hojun Song

10.1 Taxonomic Classification and Phylogeny 245

10.2 Diversity and Distribution 246

10.3 Morphological and Biological Diversity 250

10.4 Societal Importance 253

10.5 Overview of Taxa 254

10.5.1 Suborder Ensifera 254

10.5.1.1 Superfamily Grylloidea 255

10.5.1.2 Superfamily Gryllotalpoidea 255

10.5.1.3 Superfamily Schizodactyloidea 259

10.5.1.4 Superfamily Rhaphidophoroidea 260

10.5.1.5 Superfamily Hagloidea 260

10.5.1.6 Superfamily Stenopelmatoidea 260

10.5.1.7 Superfamily Tettigonioidea 261

10.5.2 Suborder Caelifera 262

10.5.2.1 Superfamily Tridactyloidea 263

10.5.2.2 Superfamily Tetrigoidea 263

10.5.2.3 Superfamily Eumastacoidea 265

10.5.2.4 Superfamily Proscopioidea 266

10.5.3.5 Superfamily Tanaoceroidea 266

10.5.3.6 Superfamily Trigonopterygoidea 267

10.5.3.7 Superfamily Pneumoroidea 267

10.5.3.8 Superfamily Pyrgomorphoidea 267

10.5.3.9 Superfamily Acridoidea 268

Acknowledgments 271

References 271

11 Biodiversity of Phasmatodea 281
Sven Bradler and Thomas R. Buckley

11.1 Phasmatodean Phylogeny 286

11.2 Overview of Taxa 288

11.2.1 Timema 289

11.2.2 Agathemera 290

11.2.3 Heteronemiinae 290

11.2.4 Aschiphasmatinae 290

11.2.5 Phylliinae – The True Leaf Insects 291

11.2.6 Heteropteryginae 292

11.2.7 Diapheromerinae 293

11.2.8 Pseudophasmatinae 294

11.2.9 Palophinae 294

11.2.10 The African Clade 295

11.2.11 Gratidiini 295

11.2.12 Clitumnini 296

11.2.13 Medaurini 296

11.2.14 Pharnaciini 296

11.2.15 Cladomorphinae 296

11.2.16 Stephanacridini 297

11.2.17 Lanceocercata – The “Marsupials” Among the Phasmatodea 297

11.2.18 Lonchodinae 299

11.2.19 Necrosciinae 300

11.3 The Phasmatodean Fossil Record 300

11.4 Phasmatodea as Research Tools 302

11.5 Importance to Human Society 304

References 304

12 Biodiversity of Dermaptera 315
Fabian Haas

12.1 Epizoic Dermaptera 315

12.2 Structure and Function 318

12.3 Locomotion 319

12.4 Distribution 319

12.5 Development and Reproduction 323

12.6 Behavior 323

12.6.1 Mating Behavior and Maternal Care 323

12.6.2 Defense 324

12.6.3 Feeding 324

12.7 Parasitism and Symbiosis 324

12.8 Fossils and Research History 324

12.9 Overview of Taxa 325

12.9.1 Lower Dermaptera 325

12.9.2 Higher Dermaptera 326

12.10 Societal and Scientific Importance 326

12.10.1 Plant Pests, Biological Control Agents, and General Nuisances 326

12.10.2 Medical, Veterinary, and Forensic Importance 326

12.10.3 Invasive Alien Species 327

12.10.4 Pollination and Other Ecological Services 327

12.10.5 Research Tools 327

12.10.6 Conservation – Vanishing Species 328

12.10.7 Cultural Legacy 328

Acknowledgments 328

References 328

13 Biodiversity of Grylloblattodea and Mantophasmatodea 335
Monika J. B. Eberhard, Sean D. Schoville and Klaus‐Dieter Klass

13.1 Grylloblattodea 336

13.1.1 Morphology and Biology 336

13.1.2 Overview of Taxa 341

13.2 Mantophasmatodea 343

13.2.1 Morphology and Biology 343

13.2.2 Overview of Taxa 346

13.2.2.1 Tanzaniophasmatidae 349

13.2.2.2 Mantophasmatidae 349

13.2.2.3 Tyrannophasma/Praedatophasma Clade 350

13.2.2.4 Austrophasmatidae 350

13.3 Fossil Record 351

13.4 Conclusions 352

Acknowledgments 353

References 353

14 Biodiversity of Blattodea – the Cockroaches and Termites 359
Marie Djernæs

14.1 Overview of Taxa 362

14.1.1 Superfamily Corydioidea 363

14.1.1.1 Family Corydiidae 363

14.1.1.2 Family Nocticolidae 365

14.1.2 Superfamily Blaberoidea 366

14.1.2.1 Family Ectobiidae 366

14.1.2.2 Family Blaberidae 368

14.1.3 Superfamily Blattoidea 369

14.1.3.1 Family Blattidae 369

14.1.3.2 Family Lamproblattidae 370

14.1.3.3 Family Tryonicidae 371

14.1.3.4 Family Anaplectidae 371

14.1.3.5 Family Cryptocercidae 371

14.1.3.6 Termites 371

14.2 Societal Importance 373

14.2.1 Cockroaches and Science 373

14.2.2 Cockroaches as Pests 374

14.2.3 Cockroaches as Food, Feed, and Medicine 375

14.2.4 Pet and Feeder Species 376

14.2.5 Ecological Importance 376

14.2.6 Conservation Status 377

References 377

15 Biodiversity of Mantodea 389
Frank Wieland and Gavin J. Svenson

15.1 Morphological and Biological Diversity 391

15.2 Phylogeny and Classification 396

15.2.1 Acanthopidae 396

15.2.2 Acontistidae 396

15.2.3 Amorphoscelidae 397

15.2.4 Angelidae 398

15.2.5 Chaeteessidae 398

15.2.6 Coptopterygidae 399

15.2.7 Empusidae 399

15.2.8 Epaphroditidae 399

15.2.9 Eremiaphilidae 400

15.2.10 Galinthiadidae 400

15.2.11 Hymenopodidae 401

15.2.12 Iridopterygidae 401

15.2.13 Liturgusidae 401

15.2.14 Mantidae 402

15.2.15 Mantoididae 402

15.2.16 Metallyticidae 403

15.2.17 Photinaidae 403

15.2.18 Stenophyllidae 404

15.2.19 Tarachodidae 404

15.2.20 Thespidae 404

15.2.21 Toxoderidae 405

15.2.22 Incertae Sedis 405

15.2.23 Suprafamilial Groups 405

15.2.23.1 Acanthopoidea 405

15.2.23.2 Artimantodea 405

15.2.23.3 Cernomantodea 406

15.2.23.4 Eumantodea 406

15.2.23.5 Mantidea 406

15.2.23.6 Mantoidea 406

15.2.23.7 Mantomorpha 406

15.2.23.8 Neomantodea 406

15.3 Morphological Convergence and Ecomorphs 406

15.4 Conclusions 407

References 407

16 Biodiversity of Psocoptera 417
Edward L. Mockford

16.1 Classification 418

16.2 Overview of the Psocoptera 422

16.2.1 Suborder Trogiomorpha 422

16.2.1.1 Infraorder Atropetae 423

16.2.1.2 Infraorder Psocatropetae 434

16.2.1.3 Infraorder Prionoglaridetae 434

16.2.2 Suborder Troctomorpha 434

16.2.2.1 Infraorder Nanopsocetae 434

16.2.2.2 Infraorder Amphientometae 436

16.2.2.3 Superfamily Amphientomoidea 436

16.2.2.4 Superfamily Electrentomoidea 437

16.2.3 Suborder Psocomorpha 438

16.2.3.1 Infraorder Archipsocetae 438

16.2.3.2 Infraorder Caeciliusetae 438

16.2.3.3 Infraorder Homilopsocidea 441

16.2.3.4 Infraorder Philotarsetae 443

16.2.3.5 Infraorder Epipsocetae 444

16.2.3.6 Infraorder Psocetae 445

16.3 Summary of Diversity of the Psocoptera and Predictions 447

16.4 The Importance to Humans of Psocopteran Biodiversity 448

Acknowledgments 448

References 449

17 Biodiversity of Ectoparasites: Lice (Phthiraptera) and Fleas (Siphonaptera) 457
Terry D. Galloway

17.1 Phthiraptera – The Parasitic Lice 458

17.2 Siphonaptera – The Fleas 465

17.3 Medical and Veterinary Importance 474

17.3.1 Lice 474

17.3.2 Fleas 475

17.4 Community Diversity of Lice and Fleas 477

17.5 Conservation of Lice and Fleas 478

Acknowledgments 479

References 479

18 Biodiversity of Thysanoptera 483
Laurence A. Mound

18.1 What Are Thrips? 484

18.2 Family Diversity 484

18.3 The Lives of Thrips 486

18.4 Thrips Around the World 487

18.5 Thrips as Research Targets 488

18.6 Structural Diversity of Thrips 491

18.7 Thrips as Pests 493

18.8 Thrips and Human Life 494

18.9 Thrips Information Sources 495

References 496

19 The Diversity of the True Hoppers (Hemiptera: Auchenorrhyncha) 501
Charles R. Bartlett, Lewis L. Deitz, Dmitry A. Dmitriev, Allen F. Sanborn, Adeline Soulier‐Perkin
and Matthew S. Wallace

19.1 Overview of the Auchenorrhyncha 511

19.1.1 Cicadomorpha 511

19.1.1.1 Superfamily Cicadoidea – The Cicadas: Cicadidae and Tettigarctidae 516

19.1.1.2 Superfamily Cercopoidea – Spittlebugs or Froghoppers 518

19.1.1.3 Superfamily Membracoidea – Leafhoppers and Treehoppers 521

19.1.2 Fulgoromorpha 530

19.1.2.1 Superfamily Fulgoroidea – The Planthoppers 536

19.2 Prospectus 549

Acknowledgments 550

References 551

20 The Biodiversity of Sternorrhyncha: Scale Insects, Aphids, Psyllids, and Whiteflies 591
Nate B. Hardy

20.1 Sternorrhyncha and Society 591

20.1.1 Economic Importance 591

20.1.2 Ecological Importance 593

20.1.3 Existential Importance 593

20.2 Taxonomic Diversity of Sternorrhyncha 593

20.2.1 Phylogeny and Classification 593

20.2.1.1 Aphidoidea 594

20.2.1.2 Aleyrodoidea 594

20.2.1.3 Coccoidea 595

20.2.1.4 Psylloidea 595

20.3 Functional Diversity of Sternorrhyncha 596

20.3.1 Trophic Diversity 596

20.3.1.1 Phloem Feeding 596

20.3.1.2 Not Phloem Feeding 596

20.3.1.3 Trophic‐Breadth Variation 596

20.3.2 Trophic Evolution 597

20.3.3 Endosymbiosis 598

20.3.4 Endosymbiont Diversity 598

20.3.4.1 Endosymbiont Phylogenetic Diversity 598

20.3.4.2 Endosymbiont Functional Diversity 602

20.3.5 Endosymbiont Evolution 604

20.3.5.1 Ecological Speciation 605

20.3.5.2 Conflictual Speciation 606

20.3.6 Life‐Cycle Diversity 607

20.3.6.1 Aphid Soldiers and Eusocial Societies 608

20.3.6.2 Life‐Cycle Evolution 609

20.3.7 Genetic‐System Diversity 610

20.3.7.1 Holocentric Chromosomes 610

20.3.7.2 Sex Determination and Parthenogenesis 610

20.3.7.3 Sex Ratio 611

20.3.7.4 Supernumerary Chromosomes 613

20.3.8 Genetic‐System Evolution 613

20.3.8.1 What Sternorrhyncha Can Tell Us About the Evolution of Sex 613

20.3.8.2 What Sternorrhyncha Can Tell Us About the Evolution of Genetic Systems 614

20.4 Conclusions 615

Acknowledgments 616

References 616

21 Biodiversity of the Neuropterida (Insecta: Neuroptera, Megaloptera, and Raphidioptera) 627
John D. Oswald and Renato J. P. Machado

21.1 Phylogeny 628

21.2 Geological Age 628

21.3 Metamorphosis and Life Stages 629

21.3.1 Adults 629

21.3.2 Eggs and Oviposition 630

21.3.3 Larvae 632

21.3.4 Pupae 633

21.4 Biology 634

21.5 Distribution 636

21.6 Overview of Orders and Families 637

21.6.1 Order Megaloptera 642

21.6.1.1 Family Corydalidae 642

21.6.1.2 Family Sialidae 642

21.6.2 Order Neuroptera 644

21.6.2.1 Family Ascalaphidae 644

21.6.2.2 Family Berothidae 645

21.6.2.3 Family Chrysopidae 645

21.6.2.4 Family Coniopterygidae 647

21.6.2.5 Family Dilaridae 647

21.6.2.6 Family Hemerobiidae 649

21.6.2.7 Family Ithonidae 649

21.6.2.8 Family Mantispidae 650

21.6.2.9 Family Myrmeleontidae 651

21.6.2.10 Family Nemopteridae 652

21.6.2.11 Family Nevrorthidae 653

21.6.2.12 Family Nymphidae 653

21.6.2.13 Family Osmylidae 655

21.6.2.14 Family Psychopsidae 656

21.6.2.15 Family Sisyridae 656

21.6.3 Order Raphidioptera 657

21.6.3.1 Family Inocelliidae 657

21.6.3.2 Family Raphidiidae 657

21.7 Societal Importance 658

21.8 Scientific Importance 659

Acknowledgments 660

References 660

22 Biodiversity of Strepsiptera 673
Jeyaraney Kathirithamby

22.1 Family Bahiaxenidae 678

22.2 Suborder Mengenillidia 678

22.2.1 Family Mengenillidae 678

22.3 Suborder Stylopidia 681

22.3.1 Family Corioxenidae 685

22.4 Infraorder Stylopiformia 685

22.4.1 Family Myrmecolacidae 685

22.4.2 Family Lychnocolacidae 688

22.4.3 Family Stylopidae 688

22.4.4 Family Xenidae 689

22.4.5 Family Bohartillidae 690

22.4.6 Family Elenchidae 691

22.4.7 Family Halictophagidae 692

22.5 Conclusions 694

Acknowledgments 694

References 694

23 Biodiversity of Mecoptera 705
Wesley J. Bicha

23.1 Suborder Nannomecoptera 706

23.1.1 Family Nannochoristidae 706

23.2 Suborder Pistillifera 707

23.2.1 Infraorder Raptipedia 707

23.2.1.1 Family Bittacidae 707

23.2.2 Infraorder Opisthogonopora 709

23.2.2.1 Group Boreomorpha 710

23.2.2.2 Group Meropomorpha 711

23.2.2.3 Group Panorpomorpha 711

23.3 Societal Value of Mecoptera 715

23.4 Scientific Value of Mecoptera 716

23.5 Conclusion 716

References 716

Part III Perspectives 721

24 The Fossil History of Insect Diversity 723
Conrad C. Labandeira

24.1 Importance of the Insect Fossil Record 724

24.2 Types of Insect Diversity Past and Present 725

24.2.1 Taxonomic and Taxic Diversity 725

24.2.2 Ecological Diversity 730

24.2.3 Biotal Diversity 733

24.2.4 Plant–Insect Interactional Diversity 735

24.2.4.1 Short‐Term Studies 746

24.2.4.2 Intermediate‐Term Studies 746

24.2.4.3 Long‐Term Studies 747

24.2.4.4 Very Long‐Term Studies 747

24.2.5 Morphological Diversity 749

24.2.5.1 Size Disparity 753

24.2.5.2 Structural Disparity 753

24.2.5.3 Developmental Disparity 757

24.2.5.4 Key Innovations 757

24.2.6 Functional Diversity 760

24.2.6.1 Functional Feeding Groups 760

24.2.6.2 Lacustrine Ecospace Occupation 760

24.2.6.3 Parasitoids and Trophic Roles in Food Webs 761

24.2.7 Behavioral Diversity 761

24.2.7.1 Sociality 762

24.2.7.2 Mimicry and Warning Coloration 762

24.2.7.3 Pollen‐Collection Strategies 763

24.3 Biodiversity Changes Through Time 765

24.3.1 Long‐Term Environmental Change 765

24.3.1.1 Mid‐Paleozoic Beginnings of Terrestrial Ecosystems 765

24.3.1.2 Initial Taxic Radiation of Insects 765

24.3.1.3 Late Paleozoic Expansion of Herbivore Functional Feeding Groups 766

24.3.1.4 Ecological and Behavioral Changes from the Mesozoic Lacustrine Revolution 767

24.3.1.5 The Parasitoid Revolution 767

24.3.1.6 Biodiversity Ramifications of the Early Expansion of Angiosperms 768

24.3.1.7 Expansion of the Grassland Biome 769

24.3.2 Short‐Term Environmental Change 770

24.3.2.1 Permian–Triassic Global Crisis and Reductions in Biodiversity 770

24.3.2.2 Cretaceous–Paleogene Global Crisis and Reductions in Biodiversity 771

24.3.2.3 Biodiversity Realignments During the Paleocene–Eocene Thermal Maximum 772

24.3.2.4 End‐Pleistocene Extinctions and Their Meaning for the Modern World 772

24.4 Current Societal Aspects of Fossil Insect Biodiversity 773

24.4.1 Human Interests and Biases 773

24.4.2 Tools for Understanding Evolutionary and Ecological Diversification 773

24.4.3 Detection of Insect‐Borne Diseases in the Fossil Record 774

24.4.4 Insect Herbivory and Global Warming 775

24.4.5 The Current Biodiversity Crisis 775

24.5 Conclusions 776

24.5.1 The Importance of the Insect Fossil Record for Understanding Insect Diversity 776

24.5.2 The Five Fundamental Types of Diversity in the Insect Fossil Record 776

24.5.3 The Effect of Long‐Term Environmental Change on Insect Diversity 776

24.5.4 The Effect of Short‐Term Environmental Changes on Insect Diversity 776

24.5.5 How Fossil Insect Biodiversity Affects Us All 776

Acknowledgments 776

References 777

25 Phenotypes in Insect Biodiversity Research 789
István Mikó and Andrew R. Deans

25.1 Phenotype Data: Past and Present 789

25.2 Phenotype Data: Present and Future 791

25.2.1 Biological Ontologies 791

25.2.2 Ontologies in Biodiversity Research 792

25.2.2.1 Referencing a Glossary 792

25.2.2.2 Generating Logically Consistent Phenotypes 793

25.2.2.3 Reasoning Across Phenotype Data 794

25.3 Challenges and Future Directions 795

25.3.1 Social Challenges to “Standardization” 795

25.3.2 Ontology Development Barriers 795

25.3.3 Ontology Implementation Barriers 796

25.3.4 Phenotype Complexity 796

25.3.5 Communicating Primarily with Semantic Phenotypes 796

25.3.6 No Clearinghouse for Phenotype Data 796

25.3.7 Reasoning Challenges 797

Acknowledgments 797

References 797

26 Global Change and Insect Biodiversity in Agroecosystems 801
David R. Gillespie, Matthew J. W. Cock, Thibaud Decaëns, Philippa J. Gerard, Sandra D. Gillespie,

Juan J. Jiménez and Owen O. Olfert

26.1 Global Change 801

26.2 Insect Biodiversity in Agriculture 803

26.2.1 What Do We Mean By “Biodiversity”? 804

26.3 Effects of Global Change on Biodiversity – What Do We Know? 805

26.3.1 Crop Pests and Natural Enemies 805

26.3.1.1 Distribution 805

26.3.1.2 Community Composition 808

26.3.1.3 Other Responses to Climate Change 810

26.3.2 Soil Function and Topsoil Maintenance 812

26.3.3 Implications of Global Change for Crop Pollination 814

26.3.3.1 Evidence for Importance of Biodiversity for Pollination Service to Crops 814

26.3.3.2 Expected Effects of Global Change on Pollinator Diversity – Consequences for Society 814

26.4 Island Versus Continent Contrasts 815

26.4.1 Impacts on Biodiversity of Insects in Island Agroecosystems 816

26.5 Tropical Versus Temperate Issues 818

26.5.1 Climate Tolerances in Tropical and Temperate Species 819

26.6 Some Concluding Viewpoints 822

References 823

27 Digital Photography and the Democratization of Biodiversity Information 839
Stephen A. Marshall

27.1 The Digital Insect Collection 840

27.2 Digital Images in Interactive Keys 844

27.3 Digital Photography and Taxonomic Revisions 845

27.4 Organization of Digital Insect Collections 848

27.5 Conclusions 849

References 849

28 Bee (Hymenoptera: Apoidea: Anthophila) Diversity Through Time 851
Sophie Cardinal

28.1 Morphological Diversity 851

28.2 Behavioral Diversity: Social, Nesting, and Floral Hosts 852

28.3 Geographical Diversity 852

28.4 Evolutionary History and Diversification 853

28.5 Conclusions 863

References 864

29 Insect Biodiversity in Culture and Art 869
Gene Kritsky and Jessee J. Smith

29.1 Prehistory 870

29.2 Insects in the Ancient World 871

29.3 The Cult of Artemis: A Case Study 874

29.4 Roman Insect Art 875

29.5 Ancient China 876

29.6 Religions of India 877

29.7 Post‐Classical Era 877

29.8 The Americas 880

29.9 Modern History 882

29.10 Japanese Art 884

29.11 Language and Literature 886

29.12 Insects in Music 889

29.13 Insects in Cinema 891

29.14 Akihabara Culture: Toys, Video Games, and Anime from Modern Japan 892

29.15 Present and Future Trends in Cultural Entomology 894

29.16 The Internet Age 895

References 896

Index of Arthropod Taxa Arranged by Order and Family 899

Index of Arthropod Taxa Arranged Alphabetically 943

Index of non‐Arthropod Taxa Arranged Alphabetically 975

Subject Index 979

Authors

Robert G. Foottit Agriculture and Agri-Food Canada. Peter H. Adler Clemson University.