An extensive introduction to the engineering and manufacture of current and next-generation flat panel displays
This book provides a broad overview of the manufacturing of flat panel displays, with a particular emphasis on the display systems at the forefront of the current mobile device revolution. It is structured to cover a broad spectrum of topics within the unifying theme of display systems manufacturing. An important theme of this book is treating displays as systems, which expands the scope beyond the technologies and manufacturing of traditional display panels (LCD and OLED) to also include key components for mobile device applications, such as flexible OLED, thin LCD backlights, as well as the manufacturing of display module assemblies.
Flat Panel Display Manufacturing fills an important gap in the current book literature describing the state of the art in display manufacturing for today's displays, and looks to create a reference the development of next generation displays. The editorial team brings a broad and deep perspective on flat panel display manufacturing, with a global view spanning decades of experience at leading institutions in Japan, Korea, Taiwan, and the USA, and including direct pioneering contributions to the development of displays. The book includes a total of 24 chapters contributed by experts at leading manufacturing institutions from the global FPD industry in Korea, Japan, Taiwan, Germany, Israel, and USA.
- Provides an overview of the evolution of display technologies and manufacturing
- Treats display products as systems with manifold applications, expanding the scope beyond traditional display panel manufacturing to key components for mobile devices and TV applications
- Provides a detailed overview of LCD manufacturing, including panel architectures, process flows, and module manufacturing
- Provides a detailed overview of OLED manufacturing for both mobile and TV applications, including a chapter dedicated to the young field of flexible OLED manufacturing
- Provides a detailed overview of the key unit processes and corresponding manufacturing equipment, including manufacturing test & repair of TFT array panels as well as display module inspection & repair
- Introduces key topics in display manufacturing science and engineering, including productivity & quality, factory architectures, and green manufacturing
Flat Panel Display Manufacturing will appeal to professionals and engineers in R&D departments for display-related technology development, as well as to graduates and Ph.D. students specializing in LCD/OLED/other flat panel displays.
Table of Contents
List of Contributors xxi
Series Editor’s Foreword xxv
Preface xxvii
1 Introduction 1
Fang‐Chen Luo, Jun Souk, Shinji Morozumi, and Ion Bita
1.1 Introduction 1
1.2 Historic Review of TFT‐LCD Manufacturing Technology Progress 1
1.2.1 Early Stage TFT and TFT‐Based Displays 2
1.2.2 The 1990s: Initiation of TFT‐LCD Manufacturing and Incubation of TFT‐LCD Products 2
1.2.3 Late 1990s: Booming of LCD Desktop Monitor and Wide Viewing Angle Technologies 4
1.2.4 The 2000s: A Golden Time for LCD‐TV Manufacturing Technology Advances 4
1.3 Analyzing the Success Factors in LCD Manufacturing 5
1.3.1 Scaling the LCD Substrate Size 7
1.3.2 Major Milestones in TFT‐LCD Manufacturing Technology 9
1.3.2.1 First Revolution: AKT Cluster PECVD Tool in 1993 9
1.3.2.2 Second Revolution: Wide Viewing Angle Technology in 1997 9
1.3.2.3 Third Revolution: LC Drop Filling Technology in 2003 10
1.3.3 Major Stepping Stones Leading to the Success of Active Matrix Displays 10
References 11
2 TFT Array Process Architecture and Manufacturing Process Flow 13
Chiwoo Kim
2.1 Introduction 13
2.2 Material Properties and TFT Characteristics of a‐Si, LTPS, and Metal Oxide TFTs 15
2.2.1 a‐Si TFT 15
2.2.2 LTPS TFT 16
2.2.2.1 Excimer Laser Annealing (ELA) 17
2.2.3 Amorphous Oxide Semiconductor TFTs 22
2.3 a‐Si TFT Array Process Architecture and Process Flow 22
2.3.1 Four‐Mask Count Process Architecture for TFT‐LCDs 24
2.4 Poly‐Si TFT Architecture and Fabrication 27
2.5 Oxide Semiconductor TFT Architecture and Fabrication 30
2.6 TFT LCD Applications 32
2.7 Development of SLS‐Based System on Glass Display [1, 11, 14, 15] 33
References 35
3 Color Filter Architecture, Materials, and Process Flow 39
Young Seok Choi, Musun Kwak, and Youn Sung Na
3.1 Introduction 39
3.2 Structure and Role of the Color Filter 39
3.2.1 Red, Green, and Blue (RGB) Layer 40
3.2.1.1 Color Coordinate and Color Gamut 41
3.2.2 Black Matrix 44
3.2.3 Overcoat and Transparent Electrode 45
3.2.4 Column Spacer 46
3.3 Color Filter Manufacturing Process Flow 46
3.3.1 Unit Process 46
3.3.1.1 Formation of Black Matrix 46
3.3.1.2 Formation of RGB Layer 48
3.3.1.3 Overcoat (OC) 51
3.3.1.4 Formation of ITO Electrodes 53
3.3.1.5 Column Spacer (Pattern Spacer) 53
3.3.2 Process Flow for Different LC Mode 54
3.3.2.1 Color Filter for the TN Mode 54
3.3.2.2 Color Filter for the IPS Mode 54
3.3.2.3 Color Filter for the VA Mode 55
3.4 New Color Filter Design 55
3.4.1 White Color (Four Primary Colors) Technology 55
3.4.2 Color Filter on TFT 56
References 57
4 Liquid Crystal Cell Process 59
Heung‐Shik Park and Ki‐Chul Shin
4.1 Introduction 59
4.2 Liquid Crystal Cell Process 59
4.2.1 Alignment Layer Treatment 61
4.2.2 Process of Applying PI Layers 62
4.2.3 Rubbing Process 63
4.2.4 Photo‐Alignment Process 64
4.2.5 LC Filling Process 65
4.2.5.1 Vacuum Filling Method 66
4.2.5.2 End Seal Process 66
4.2.5.3 One Drop Filling (ODF) Method 67
4.2.6 Vacuum Assembly Process 68
4.2.7 Polarizer Attachment Process 69
4.3 Conclusions 70
Acknowledgments 70
References 70
5 TFT‐LCD Module and Package Process 73
Chun Chang Hung
5.1 Introduction 73
5.2 Driver IC Bonding: TAB and COG 73
5.3 Introduction to Large‐Panel JI Process 74
5.3.1 COF Bonding 75
5.3.1.1 Edge Clean 75
5.3.1.2 ACF Attachment 76
5.3.1.3 COF Pre‐Bonding 77
5.3.1.4 COF Main Bonding 78
5.3.1.5 Lead Check 78
5.3.1.6 Silicone Dispensing 78
5.3.2 PCB Bonding 79
5.3.3 PCB Test 79
5.3.4 Press Heads: Long Bar or Short Bar 79
5.4 Introduction to Small‐Panel JI Process 79
5.4.1 Beveling 80
5.4.2 Panel Cleaning 80
5.4.3 Polarizer Attachment 80
5.4.4 Chip on Glass (COG) Bonding 81
5.4.5 FPC on Glass (FOG) Bonding 81
5.4.6 Optical Microscope (OM) Inspection 81
5.4.7 UV Glue Dispense 82
5.4.8 Post Bonding Inspection (PBI) 82
5.4.9 Protection Glue Dispensing 82
5.5 LCD Module Assembly 83
5.6 Aging 84
5.7 Module in Backlight or Backlight in Module 85
References 86
6 LCD Backlights 87
Insun Hwang and Jae‐Hyeon Ko
6.1 Introduction 87
6.2 LED Sources 90
6.2.1 GaN Epi‐Wafer on Sapphire 92
6.2.2 LED Chip 93
6.2.3 Light Extraction 94
6.2.4 LED Package 96
6.2.5 SMT on FPCB 97
6.3 Light Guide Plate 98
6.3.1 Optical Principles of LGP 98
6.3.2 Optical Pattern Design 99
6.3.3 Manufacturing of LGP 101
6.3.3.1 Injection Molding 101
6.3.3.2 Screen Printing 102
6.3.3.3 Other Methods 103
6.4 Optical Films 104
6.4.1 Diffuser 106
6.4.2 Prism Film 107
6.4.3 Reflector 108
6.4.4 Other Films 108
6.5 Direct‐Type BLU 111
6.6 Summary 111
References 112
7 TFT Backplane and Issues for OLED 115
Chiwoo Kim
7.1 Introduction 115
7.2 LTPS TFT Backplane for OLED Films 116
7.2.1 Advanced Excimer Laser Annealing (AELA) for Large‐Sized AMOLED Displays 117
7.2.2 Line‐Scan Sequential Lateral Solidification Process for AMOLED Application 120
7.3 Oxide Semiconductor TFT for OLED 122
7.3.1 Oxide TFT-Based OLED for Large‐Sized TVs 123
7.4 Best Backplane Solution for AMOLED 125
References 127
8A OLED Manufacturing Process for Mobile Application 129
Jang Hyuk Kwon and Raju Lampande
8A.1 Introduction 129
8A.2 Current Status of AMOLED for Mobile Display 130
8A.2.1 Top Emission Technology 130
8A.3 Fine Metal Mask Technology (Shadow Mask Technology) 133
8A.4 Encapsulation Techniques for OLEDs 135
8A.4.1 Frit Sealing 135
8A.4.2 Thin‐Film Encapsulation 136
8A.5 Flexible OLED technology 137
8A.6 AMOLED Manufacturing Process 137
8A.7 Summary 140
References 140
8B OLED Manufacturing Process for TV Application 143
Chang Wook Han and Yoon Heung Tak
8B.1 Introduction 143
8B.2 Fine Metal Mask (FMM) 144
8B.3 Manufacturing Process for White OLED and Color Filter Methods 147
8B.3.1 One‐Stacked White OLED Device 149
8B.3.2 Two‐Stacked White OLED Device 152
8B.3.3 Three‐Stacked White‐OLED Device 155
References 157
9 OLED Encapsulation Technology 159
Young‐Hoon Shin
9.1 Introduction 159
9.2 Principles of OLED Encapsulation 159
9.2.1 Effect of H2O 160
9.3 Classification of Encapsulation Technologies 162
9.3.1 Edge Seal 163
9.3.2 Frit Seal 164
9.3.3 Dam and Fill 166
9.3.4 Face Seal 167
9.3.5 Thin‐Film Encapsulation (TFE) 168
9.4 Summary 170
References 170
10 Flexible OLED Manufacturing 173
Woojae Lee and Jun Souk
10.1 Introduction 173
10.2 Critical Technologies in Flexible OLED Display 174
10.2.1 High‐Temperature PI Film 175
10.2.2 Encapsulation Layer 176
10.2.2.1 Thin‐Film Encapsulation (TFE) Method 176
10.2.2.2 Hyrid Encapsulation Method 177
10.2.2.3 Other Encapsulation Methods 178
10.2.2.4 Measurement of Barrier Performance 179
10.2.3 Laser Lift‐Off 180
10.2.4 Touch Sensor on F‐OLED 181
10.3 Process Flow of F‐OLED 181
10.3.1 PI Film Coating and Curing 181
10.3.2 LTPS TFT Backplane Process 183
10.3.3 OLED Deposition Process 183
10.3.4 Thin‐Film Encapsulation 185
10.3.5 Laser Lift‐Off 185
10.3.6 Lamination of Backing Plastic Film and Cut to Cell Size 185
10.3.7 Touch Sensor Attach 186
10.3.8 Circular Polarizer Attach 186
10.3.9 Module Assembly (Bonding Drive IC) 186
10.4 Foldable OLED 186
10.5 Summary 188
References 189
11A Metal Lines and ITO PVD 193
Hyun Eok Shin, Chang Oh Jeong, and Junho Song
11A.1 Introduction 193
11A.1.1 Basic Requirements of Metallization for Display 193
11A.1.2 Thin‐Film Deposition by Sputtering 195
11A.2 Metal Line Evolution in Past Years of TFT‐LCD 198
11A.2.1 Gate Line Metals 199
11A.2.1.1 Al and Al Alloy Electrode 199
11A.2.1.2 Cu Electrode 201
11A.2.2 Data line (Source/Drain) Metals 202
11A.2.2.1 Data Al Metal 202
11A.2.2.2 Data Cu Metal 203
11A.2.2.3 Data Chromium (Cr) Metal 203
11A.2.2.4 Molybdenum (Mo) Metal 203
11A.2.2.5 Titanium (Ti) Metal 204
11A.3 Metallization for OLED Display 205
11A.3.1 Gate Line Metals 205
11A.3.2 Source/Drain Metals 205
11A.3.3 Pixel Anode 206
11A.4 Transparent Electrode 207
References 208
11B Thin‐Film PVD: Materials, Processes, and Equipment 209
Tetsuhiro Ohno
11B.1 Introduction 209
11B.2 Sputtering Method 210
11B.3 Evolution of Sputtering Equipment for FPD Devices 212
11B.3.1 Cluster Tool for Gen 2 Size 212
11B.3.2 Cluster Tool for Gen 4.5 to Gen 7 Size 213
11B.3.3 Vertical Cluster Tool for Gen 8 Size 213
11B.4 Evolution of Sputtering Cathode 215
11B.4.1 Cathode Structure Evolution 215
11B.4.2 Dynamic Multi Cathode for LTPS 217
11B.4.3 Cathode Selection Strategy 217
11B.5 Transparent Oxide Semiconductor (TOS) Thin‐Film Deposition Technology 218
11B.5.1 Deposition Equipment for TOS‐TFT 218
11B.5.2 New Cathode Structure for TOS‐TFT 219
11B.6 Metallization Materials and Deposition Technology 221
References 223
11C Thin‐Film PVD (Rotary Target) 225
Marcus Bender
11C 1 Introduction 225
11C.2 Source Technology 227
11C.2.1 Planar Cathodes 227
11C.2.2 Rotary Cathodes 229
11C.2.3 Rotary Cathode Array 230
11C.3 Materials, Processes, and Characterization 232
11C.3.1 Introduction 232
11C.3.2 Backplane Metallization 232
11C.3.3 Layers for Metal‐Oxide TFTs 234
11C.3.4 Transparent Electrodes 236
11C.3.5 Adding Touch Functionality and Improving End‐User Experience 238
References 239
12A Thin‐Film PECVD (AKT) 241
Tae Kyung Won, Soo Young Choi, and John M. White
12A.1 Introduction 241
12A.2 Process Chamber Technology 243
12A.2.1 Electrode Design 243
12A.2.1.1 Hollow Cathode Effect and Hollow Cathode Gradient 243
12A.2.1.2 Gas Flow Control 245
12A.2.1.3 Susceptor 245
12A.2.2 Chamber Cleaning 246
12A.3 Thin‐Film Material, Process, and Characterization 248
12A.3.1 Amorphous Si (a‐Si) TFT 248
12A.3.1.1 Silicon Nitride (SiN) 248
12A.3.1.2 Amorphous Silicon (a‐Si) 253
12A.3.1.3 Phosphorus‐Doped Amorphous Silicon (n+ a‐Si) 257
12A.3.2 Low‐Temperature Poly Silicon (LTPS) TFT 258
12A.3.2.1 Silicon Oxide (SiO) 259
12A.3.2.2 a‐Si Precursor Film (Dehydrogenation) 260
12A.3.3 Metal‐Oxide (MO) TFT 263
12A.3.3.1 Silicon Oxide (SiO) 265
12A.3.4 Thin‐Film Encapsulation (TFE) 269
12A.3.4.1 Barrier Layer (Silicon Nitride) 269
12A.3.4.2 Buffer Layer 271
References 271
12B Thin‐Film PECVD (Ulvac) 273
Masashi Kikuchi
12B.1 Introduction 273
12B.2 Plasma of PECVD 273
12B.3 Plasma Modes and Reactor Configuration 273
12B.3.1 CCP‐Type Reactor 274
12B.3.2 Microwave‐Type Reactor 274
12B.3.3 ICP‐Type Reactor 275
12B.4 PECVD Process for Display 276
12B.4.1 a‐Si Film for a‐Si TFT 276
12B.4.2 a‐Si Film for LTPS 277
12B.4.3 SiNx Film 278
12B.4.4 TEOS SiO2 Film 279
12B.5 PECVD System Overview 279
12B.6 Remote Plasma Cleaning 279
12B.6.1 Gas Flow Style of Remote Plasma Cleaning 281
12B.6.2 Cleaning and Corrosion 281
12B.7 Passivation Layer for OLED 282
12B.7.1 Passivation by Single/Double/Multi‐Layer 282
12B.8 PECVD Deposition for IGZO TFT 283
12B.8.1 Gate Insulator for IGZO TFT 283
12B.8.2 Passivation Film for IGZO TFT 284
12B.9 Particle Generation 284
References 286
13 Photolithography 287
Yasunori Nishimura, Kozo Yano, Masataka Itoh, and Masahiro Ito
13.1 Introduction 287
13.2 Photolithography Process Overview 288
13.2.1 Cleaning 289
13.2.2 Preparation 289
13.2.3 Photoresist Coating 289
13.2.4 Exposure 289
13.2.5 Development 289
13.2.6 Etching 289
13.2.7 Resist Removal 289
13.3 Photoresist Coating 290
13.3.1 Evolution of Photoresist Coating 290
13.3.2 Slit Coating 290
13.3.2.1 Principles of Slit Coating 290
13.3.2.2 Slit‐Coating System 291
13.4 Exposure 292
13.4.1 Photoresist and Exposure 292
13.4.1.1 Photoresist 292
13.4.1.2 Color Resist 292
13.4.1.3 UV Light Source for Exposure 292
13.4.2 General Aspects of Exposure Systems 292
13.4.3 Stepper 293
13.4.4 Projection Scanning Exposure System 294
13.4.5 Mirror Projection Scan System (Canon) 296
13.4.6 Multi‐Lens Projection System (Nikon) 296
13.4.6.1 Multi‐Lens Optics 296
13.4.6.2 Multi‐Lens Projection System 296
13.4.7 Proximity Exposure 297
13.5 Photoresist Development 300
13.6 Inline Photolithography Processing Equipment 301
13.7 Photoresist Stripping 302
13.8 Photolithography for Color Filters 303
13.8.1 Color Filter Structures 303
13.8.1.1 TN 304
13.8.1.2 VA 304
13.8.1.3 IPS 304
13.8.2 Materials for Color Filters 305
13.8.2.1 Black Matrix Materials 305
13.8.2.2 RGB Color Materials 305
13.8.2.3 PS (Photo Spacer) Materials 306
13.8.3 Photolithography Process for Color Filters 307
13.8.3.1 Color Resist Coating 307
13.8.3.2 Exposure 307
13.8.3.3 Development 308
13.8.4 Higher‐Performance Color Filters 309
13.8.4.1 Mobile Applications 309
13.8.4.2 TV Applications 309
References 310
14A Wet Etching Processes and Equipment 311
Kazuo Jodai
14A.1 Introduction 311
14A.2 Overview of TFT Process 312
14A.3 Applications and Equipment of Wet Etching 313
14A.3.1 Applications 313
14A.3.2 Equipment (Outline) 313
14A.3.3 Substrate Transferring System 315
14A.3.4 Dip Etching System 316
14A.3.5 Cascade Rinse System 316
14A.4 Problems Due to Increased Mother Glass Size and Solutions 317
14A.4.1 Etchant Concentration Management 317
14A.4.2 Quick Rinse 317
14A.4.3 Other Issues 318
14A.5 Conclusion 318
References 318
14B Dry Etching Processes and Equipment 319
Ippei Horikoshi
14B.1 Introduction 319
14B.2 Principle of Dry Etching 319
14B.2.1 Plasma 320
14B.2.2 Ions 321
14B.2.3 Radicals 321
14B.3 Architecture for Dry Etching Equipment 322
14B.4 Dry Etching Modes 323
14B.4.1 Conventional Etching Mode and Each Characteristic 324
14B.4.2 Current Etching Mode and Each Characteristic 325
14B.5 TFT Process 325
14B.5.1 a‐Si Process 325
14B.5.2 LTPS Process 326
14B.5.3 Oxide Process 327
References 328
15 TFT Array: Inspection, Testing, and Repair 329
Shulik Leshem, Noam Cohen, Savier Pham, Mike Lim, and Amir Peled
15.1 Defect Theory 329
15.1.1 Typical Production Defects 329
15.1.1.1 Pattern Defects 329
15.1.1.2 Foreign Particles 331
15.1.2 Understanding the Nature of Defects 332
15.1.2.1 Critical and Non‐Critical Defects 332
15.1.2.2 Electrical and Non‐Electrical Defects 333
15.1.3 Effect of Defects on Final FPD Devices and Yields 333
15.2 AOI (Automated Optical Inspection) 334
15.2.1 The Need 334
15.2.2 AOI Tasks, Functions, and Sequences 335
15.2.2.1 Image Acquisition 335
15.2.2.2 Defect Detection 336
15.2.2.3 Defect Classification 336
15.2.2.4 Review Image Grabbing 337
15.2.2.5 Defect Reporting and Judgment 337
15.2.3 AOI Optical Concept 337
15.2.3.1 Image Quality Criteria 338
15.2.3.2 Scan Cameras 339
15.2.3.2.1 Camera Type 339
15.2.3.2.2 Resolution Changer 339
15.2.3.2.3 Backside Inspection 339
15.2.3.3 Scan Illumination 339
15.2.3.3.1 Types of Illumination 339
15.2.3.4 Video Grabbing for Defect Review and Metrology 340
15.2.3.4.1 Review/Metrology Cameras 340
15.2.3.4.2 On‐the‐Fly Video Grabbing 340
15.2.3.4.3 Alternative to Video Images 340
15.2.4 AOI Defect Detection Principles 341
15.2.4.1 Gray Level Concept 342
15.2.4.2 Comparison of Gray Level Values Between Neighboring Cells 342
15.2.4.3 Detection Sensitivity 342
15.2.4.4 Detection Selectivity 344
15.2.5 AOI Special Features 344
15.2.5.1 Detection of Special Defect Types 344
15.2.5.2 Inspection of In‐Cell Touch Panels 345
15.2.5.3 Peripheral Area Inspection 346
15.2.5.4 Mura Defects 346
15.2.5.5 Cell Process Inspection 347
15.2.5.6 Defect Classification 347
15.2.5.7 Metrology: CD/O Measurement 349
15.2.5.8 Automatic Judgment 350
15.2.6 Offline Versus Inline AOI 350
15.2.7 AOI Usage, Application and Trends 351
15.3 Electrical Testing 352
15.3.1 The Need 352
15.3.2 Array Tester Tasks, Functions, and Sequences 353
15.3.2.1 Panel Signal Driving 353
15.3.2.1.1 Shorting Bar Probing Method 354
15.3.2.1.2 Full Contact Probing Method 354
15.3.2.2 Contact or Non‐Contact Sensing 354
15.3.2.2.1 Contact Sensing 355
15.3.2.2.2 Non‐Contact Sensing Methods 355
15.3.2.3 Panel Image Processing and Defect Detection 355
15.3.2.4 Post‐Defect Detection Processes 355
15.3.3 Array Tester System Design Concept 356
15.3.3.1 Signal Driving Probing 357
15.3.3.2 Ultra‐High‐Resolution Testing 357
15.3.3.3 System TACT 358
15.3.3.4 “High‐Channel” Testing 358
15.3.3.5 Advanced Process Technology Testing (AMOLED, FLEX OLED) 358
15.3.4 Array Tester Special Features 359
15.3.4.1 GOA, ASG, and IGD Testing 359
15.3.4.2 Electro Mura Monitoring 359
15.3.4.3 Free‐Form Panel Testing 361
15.3.5 Array Tester Usage, Application, and Trends 361
15.3.5.1 Source Drain Layer Testing for LTPS LCD/OLED 362
15.3.5.2 New Probing Concept 363
15.3.5.3 In‐Cell Touch Panel Testing 363
15.4 Defect Repair 363
15.4.1 The Need 363
15.4.2 Repair System in the Production Process 364
15.4.2.1 In‐Process Repair 364
15.4.2.2 Final Repair 364
15.4.3 Repair Sequence 364
15.4.4 Short‐Circuit Repair Method 365
15.4.4.1 Laser Ablation Concept 365
15.4.4.1.1 Thermal Ablation 366
15.4.4.1.2 Cold Ablation 366
15.4.4.1.3 Photochemical Ablation 366
15.4.4.2 Laser Light Wavelengths and their Typical Applications 366
15.4.4.2.1 Laser Matter Interaction 366
15.4.4.2.2 Using DUV Laser Light (266 nm) for Short‐Circuit Defect Repair 367
15.4.4.2.3 Using Infrared Laser Light (1,064 nm) for Short‐Circuit Defect Repair 367
15.4.4.3.4 Using Green Laser Light (532 nm) for Short‐Circuit Defect Repair 367
15.4.4.3 Typical Applications of the Short‐Circuit Repair Method 367
15.4.4.3.1 Cutting 367
15.4.4.3.2 Welding 368
15.4.5 Open‐Circuit Repair Method 369
15.4.5.1 LCVD (Laser Chemical Vapor Deposition) 369
15.4.5.2 Metal Ink Deposition Repair 370
15.4.5.2.1 Dispensing 370
15.4.5.2.2 Metal Inkjet Deposition 370
15.4.5.2.3 LIFT (Laser‐Induced Forward Transfer) Deposition 371
15.4.5.3 Main Applications of the Deposition Repair (Open‐Circuit Repair) 372
15.4.6 Photoresist (PR) Repair 372
15.4.6.1 Main Applications of the Photoresist Repair 373
15.4.6.2 Photoresist Repair Technology 373
15.4.6.2.1 Using DMD for Patterning 373
15.4.6.2.2 Using FSM for Patterning 373
15.4.7 Special Features of the Repair System 375
15.4.7.1 Line Defect Locator (LDL) 375
15.4.7.2 Parallel Repair Mode for Maximum System Throughput 375
15.4.8 Repair Technology Trends 376
15.4.8.1 Cold Ablation 376
15.4.8.2 Full Automatic Repair Solution 377
15.4.9 Summary 377
16 LCM Inspection and Repair 379
Chun Chang Hung 379
16.1 Introduction 379
16.2 Functional Defects Inspection 379
16.3 Cosmetic Defects Inspection 381
16.4 Key Factors for Proper Inspection 383
16.4.1 Variation Between Inspectors 383
16.4.2 Testing Environments 385
16.4.3 Inspection Distance, Viewing Angle, and Sequence of Test Patterns 385
16.4.4 Characteristics of Product and Components 387
16.5 Automatic Optical Inspection (AOI) 388
16.6 LCM Defect Repair 388
References 391
17 Productivity and Quality Control Overview 393
Kozo Yano, Yasunori Nishimura, and Masataka Itoh
17.1 Introduction 393
17.2 Productivity Improvement 394
17.2.1 Challenges for Productivity Improvement 394
17.2.2 Enlargement of Glass Substrate 395
17.2.2.1 Productivity Improvement and Cost Reduction by Glass Size Enlargement 397
17.3 Yield Management 399
17.3.1 Yield Analysis 399
17.3.1.1 Inspection and Yield 399
17.3.1.2 Failure Mode Analysis 401
17.3.2 Yield Improvement Activity 404
17.3.2.1 Process Yield Improvement 404
17.3.2.2 Systematic Failure Minimization 404
17.3.2.3 Random Failure Minimization by Clean Process 404
17.3.2.4 Yield Improvement by Repairing 406
17.4 Quality Control System 406
17.4.1 Materials (IQC) 407
17.4.2 Facility Control 408
17.4.3 Process Quality Control 408
17.4.3.1 TFT Array Process 409
17.4.3.2 Color Filter Process 410
17.4.3.3 LCD Cell Process 412
17.4.3.4 Modulization Process 412
17.4.4 Organization and Key Issues for Quality Control 413
References 417
18 Plant Architectures and Supporting Systems 419
Kozo Yano and Michihiro Yamakawa
18.1 Introduction 419
18.2 General Issues in Plant Architecture 420
18.2.1 Plant Overview 420
18.2.2 Plant Design Procedure and Baseline 422
18.3 Clean Room Design 423
18.3.1 Clean Room Evolution 423
18.3.2 Floor Structure for Clean Room 424
18.3.3 Clean Room Ceiling Height 424
18.3.4 Air Flow and Circulation Design 427
18.3.5 Cleanliness Control 428
18.3.6 Air Flow Control Against Particle 428
18.3.7 Chemical Contamination Countermeasures 431
18.3.8 Energy Saving in FFU 433
18.4 Supporting Systems with Environmental Consideration 433
18.4.1 Incidental Facilities 433
18.4.2 Water and Its Recycle 434
18.4.3 Chemicals 436
18.4.4 Gases 436
18.4.5 Electricity 437
18.5 Production Control System 437
References 440
19 Green Manufacturing 441
YiLin Wei, Mona Yang, and Matt Chien
19.1 Introduction 441
19.2 Fabrication Plant (Fab) Design 441
19.2.1 Fab Features 441
19.2.2 Green Building Design 442
19.3 Product Material Uses 443
19.3.1 Material Types and Uses 443
19.3.2 Hazardous Substance Management 444
19.3.3 Material Hazard and Green Trend 446
19.3.4 Conflict Minerals Control 446
19.4 Manufacturing Features and Green Management 447
19.4.1 The Manufacturing Processes 447
19.4.2 Greenhouse Gas Inventory 448
19.4.3 Energy Saving in Manufacturing 449
19.4.4 Reduction of Greenhouse Gas from Manufacturing 449
19.4.5 Air Pollution and Control 451
19.4.6 Water Management and Emissions Control 452
19.4.7 Waste Recycling and Reuse 453
19.5 Future Challenges 453
References 454
Index 457