0
USD
EUR USD GBP
+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Persistent Toxic Substance Monitoring. Nanoelectrochemical Methods. Edition No. 1

  • Book

  • 552 Pages
  • June 2018
  • John Wiley and Sons Ltd
  • ID: 4430002
Filling the urgent need for a professional book that specifies the applications of nanoelectrochemistry for the monitoring of persistent toxic substances, this monograph clearly describes the design concept, construction strategies and practical applications of PTS sensing interfaces based on nanoelectrochemical methods. The comprehensive and systematic information not only provides readers with the fundamentals, but also inspires them to develop PTS monitoring sensors based on functional nanostructures and nanomaterials.
Of interestto chemists, electrochemistry researchers, materials researchers, environmental scientists, and companies dealing with electrochemical treatment and environment.

Table of Contents

Preface xi

1 Introduction 1 
Wen-Yi Zhou and Xing-Jiu Huang

References 5

2 PTS in Aquatic Environment 15 
Pei-Hua Li, JianWang, Jian-Hua Sun, and Xing-Jiu Huang

2.1 Introduction 15

2.2 Persistent Organic Pollutants in Aquatic Environment 17

2.2.1 Polychlorinated Biphenyls 18

2.2.2 Organochlorine Pesticides 19

2.2.3 Polycyclic Aromatic Hydrocarbons 20

2.2.4 Hydrazine 22

2.2.5 Mercaptan 22

2.3 Heavy Metal Pollutants in Aquatic Environment 23

2.3.1 Lead Ions 24

2.3.2 Mercury Ions 25

2.3.3 Cadmium Ions 26

2.3.4 Chromium Ions 26

2.3.5 Arsenic Ions 27

2.3.6 Copper Ions 28

2.3.7 Zinc Ions 28

2.3.8 Silver Ions 29

2.3.9 Cobalt Ions 30

2.3.10 Nickel Ions 31

2.4 Conclusion and Outlook 32

References 32

3 Common Electrochemical Principles for PTS Detection 47 
Pei-Hua Li and Xing-Jiu Huang

3.1 Introduction 47

3.2 Methods and Principles of Electrochemical Detection for PTS 48

3.2.1 Stripping Voltammetry 48

3.2.1.1 Anodic Stripping Voltammetry 51

3.2.1.2 Cathodic Stripping Voltammetry 54

3.2.1.3 Adsorption Stripping Voltammetry 56

3.2.2 Other Voltammetry 58

3.2.2.1 Linear Sweep Voltammetry 58

3.2.2.2 SquareWave Voltammetry 59

3.2.2.3 Pulse Voltammetry 60

3.2.2.4 Cyclic Voltammetry 61

3.2.3 Polarographic Analysis 64

3.2.3.1 Linear Sweep (DC) Polarography 66

3.2.3.2 AC, SquareWave, Pulse Polarography 68

3.2.4 Electrochemical Impedance Spectroscopy 72

3.3 Conclusion and Outlook 75

References 76

4 Design Concept of Nanoelectrochemical Sensing Interface 83 
Meng Yang and Xing-Jiu Huang

4.1 Introduction 83

4.2 Nanoelectrochemical Sensing Interface 84

4.2.1 Adsorption Performance of Nanomaterials Enhances the Electrochemical Signal 84

4.2.2 Specific Recognition and Adsorption of Nanomaterials 92

4.2.3 Excellent Electrocatalytic Performance of Noble Metal-based Nanomaterials 98

4.2.4 Controllably Synthesize Specific Crystal Facet to Enhance Electrochemical Signals 106

4.2.5 Based on Charge Conduction Inhibition Principle 107

4.3 Conclusions and Outlook 115

References 115

5 Carbon-based Nanomaterials Enhanced Selectivity and Sensitivity Toward PTS 125 
Min Jiang and Xing-Jiu Huang

5.1 Introduction 125

5.2 Carbon Nanotubes andTheir Complexes 126

5.2.1 Plasma-modified Multiwalled Carbon Nanotubes 127

5.2.1.1 O2-plasma-oxidized Carbon Nanotubes 128

5.2.1.2 NH3-plasma-treated Carbon Nanotubes 130

5.2.2 Inorganic Functionalization 135

5.2.2.1 Metal Nanoparticles Functionalized CNTs 135

5.2.2.2 Metal Oxides Nanoparticles Functionalized CNTs 140

5.2.3 Organic Functionalization 142

5.2.3.1 Small Organic Molecules 142

5.2.3.2 Polymers 145

5.2.3.3 DNA 146

5.2.3.4 Proteins and Enzymes 147

5.3 Graphene and Its Complexes 148

5.3.1 Inorganic Functionalization 148

5.3.1.1 Metal 148

5.3.1.2 Metal Oxides Nanoparticles Functionalized Graphene 150

5.3.1.3 Other Inorganic Functionalization 153

5.3.2 Organic Molecules-graphene Nanocomposites 156

5.3.2.1 Small Molecules Containing Special Groups 156

5.3.2.2 Polymer Functionalized Graphene 156

5.4 Carbonaceous Nanospheres (CNSs) andTheir Complexes 159

5.4.1 Polypyrrole/Carbonaceous Nanospheres 160

5.4.2 Amino Functionalized Carbon Microspheres 163

5.4.3 Hydroxylation/Carbonylation Carbonaceous Microsphere 166

5.4.3.1 Lead(II) Detection 166

5.5 Others 171

5.6 Conclusions and Outlook 174

References 174

6 Facet and Phase-dependent Electroanalysis Performance of Nanocrystals in PTSMonitoring: Demonstrated by Density Functional Theory X-ray Absorption Fine Structure Spectroscopy 195 
Wen-Yi Zhou and Xing-Jiu Huang

6.1 Introduction 195

6.2 Facet-dependent Electroanalysis Performance 197

6.2.1 High Reactive Surface of SnO2 Nanosheets for Electrochemical Sensing 197

6.2.1.1 Morphologic and Structure Characterization of Ultrathin SnO2 Nanosheets 198

6.2.1.2 Electrochemical Detection of As(III) 200

6.2.1.3 Possible Mechanism Based on Adsorption 201

6.2.2 Cu2O Microcrystals for Detecting Lead Ions 202

6.2.2.1 Morphology and Structure 202

6.2.2.2 Facet-Dependent Electrochemical Behaviors of Cu2O 203

6.2.2.3 Density FunctionalTheory (DFT) Calculation 204

6.2.3 Electrochemical Properties of Co3O4 Nanocrystals 205

6.2.3.1 Morphology and Structure 206

6.2.3.2 Electrochemical Detection of Heavy Metal Ions 207

6.2.3.3 DFT Calculations 208

6.2.4 Electrochemical Stripping Behaviors of Fe3O4 Nanocrystals 210

6.2.4.1 Characterization of Fe3O4 Nanocrystals 211

6.2.4.2 Stripping Behaviors of HMIs on Fe3O4 Nanocrystals 213

6.2.4.3 Theoretical Calculations 214

6.2.5 Facet-Dependent Performance of α-Fe2O3 Nanocrystals 215

6.2.5.1 Morphology and Structure of α-Fe2O3 215

6.2.5.2 DFT Calculations 217

6.2.6 Electrochemical Properties of Sub-20 nm-Fe3O4 Nanocrystals 219

6.2.6.1 Morphology and Structure 220

6.2.6.2 Electrochemical Detection Performance 222

6.2.6.3 DFT Calculations 223

6.2.7 Single-Crystalline (001) TiO2 Nanosheets 224

6.2.7.1 Morphology and Structure of TiO2 Nanosheets 225

6.2.7.2 Electrochemical Performance of TiO2 Toward Hg(II) 226

6.2.7.3 Defect-dependent Adsorption Capability and Electronic Properties 226

6.2.8 Facet-dependent Stripping Behavior of SnO2 Nanocrystal 229

6.2.8.1 Morphologic and Structure Characterization of SnO2 Nanoparticles 231

6.2.8.2 Electrochemical Detection of Pb(II) and Cd(II) 232

6.2.8.3 Evidence of Reasonable Mechanism: DFT Calculations and XAFS Analysis 233

6.2.8.4 Evidence of XAFS 235

6.3 Phase-dependent Electroanalysis Performance 237

6.3.1 Phase-dependent Sensitivity of α- and γ-Fe2O3 237

6.3.1.1 Morphologic and Structure Characterization of α-Fe2O3 and γ-Fe2O3 Nanoflowers 239

6.3.1.2 Phase-dependent Stripping Behavior 239

6.3.1.3 Reasonable Mechanism Based on XPS and EXAFS 241

6.4 Conclusions and Outlook 244

References 244

7 Mutual Interferences Between Heavy Metal Ions on the Electrochemical Nano-interfaces 263 
Min Jiang and Xing-Jiu Huang

7.1 Introduction 263

7.2 One-component Interference 263

7.2.1 Interference of Cu2+ on the Detection of As3+ 263

7.2.2 Interference of Hg2+ on the Detection of Pb2+ 267

7.2.3 Mutual Interference of Cu2+ and Pb2+ 269

7.2.4 Interference of Ag+ on the Detection of Pb2+ 269

7.2.5 Mutual Interference of Cu2+ and Hg2+ 270

7.2.6 Mutual Interference of Cd2+ and Zn2+ 270

7.2.7 Mutual Interference of Cd2+ and Pb2+ 273

7.2.8 Interference of Sn2+ on the Detection of Pb2+ 276

7.2.9 Others 276

7.3 Multi-component Interference – Artificially Added Interference Ions 277

7.3.1 Metals and Metal Oxides and Their Complexes 277

7.3.1.1 Au 277

7.3.1.2 MgO 279

7.3.1.3 SnO2 280

7.3.1.4 Fe2O3 282

7.3.1.5 MgSiO3 283

7.3.1.6 AuNPs/CeO2-ZrO2 285

7.3.2 Carbon-based Nanomaterials and Their Complexes 287

7.3.2.1 RGO 287

7.3.2.2 CNTs 291

7.4 Multi-component Interference – In the Actual Environment 294

7.4.1 Rice Sample 294

7.4.2 Rat Brain 295

7.5 Several Examples of Reducing or Even Eliminating Interference 296

7.6 Conclusion 298

References 298

8 Metal Oxide and Its Composite Nanomaterials for ElectrochemicalMonitoring of PTS: Design, Preparation, and Application 305 
Shan-Shan Li and Xing-Jiu Huang

8.1 Introduction 305

8.2 Metal Oxide Nanomaterials Electrode 305

8.2.1 Fe-based Oxide Nanomaterials 305

8.2.2 Co-based Oxide Nanomaterials 313

8.2.3 Mn-based Oxide Nanomaterials 323

8.2.4 Mg-based Nanomaterials 326

8.2.5 SnO2 Nanomaterials 330

8.2.6 Bi-based Nanomaterials 334

8.2.7 Other Oxide Nanomaterials 336

8.3 Metal Oxide Composite Nanomaterials 338

8.3.1 Noble Metals and Metal Oxide Composite Nanomaterials 338

8.3.2 Noble Metals Free and Metal Oxide Composite Nanomaterials 347

8.4 Others Nanomaterials 358

8.4.1 Nanomaterials without Noble Metal 358

8.4.2 Noble Metal-based Alloy Nanomaterials 370

8.5 Conclusion 373

References 374

9 Nanogap for Detection of PTS 401

Yi-Xiang Li and Xing-Jiu Huang

9.1 Introduction 401

9.2 Nanogap for Detection of Polychlorinated Biphenyls 403

9.2.1 Fabrication of Nanogap Electrode 403

9.2.2 Detection of Polychlorinated Biphenyls 405

9.3 Nanogap for Detection of Biotin–Streptavidin 413

9.3.1 Fabrication of Nanogap Electrode 413

9.3.2 Detection of Biotin–Streptavidin 418

9.4 Nanogap for Detection of Mercury Ions 421

9.4.1 Fabrication of Nanogap Electrode 422

9.4.2 Detection of Mercury Ions 424

9.5 Nanogap for Detection of OrganicThiols 430

9.5.1 Fabrication of Nanogap Electrode 431

9.5.2 Detection of an OrganicThiol 432

9.6 Conclusions and Outlook 433

References 434

10 Determination of PTS Using Ultra-microelectrodes 443 
Meng Yang and Xing-Jiu Huang

10.1 Introduction 443

10.2 Sensitively Detection of Persistent Toxic Substances Based on Ultra-microelectrodes 444

10.2.1 Ultra-microdisc Electrode 444

10.2.2 Ultra-micro Array Electrode 462

10.3 Conclusions and Outlook 465

References 465

11 ElectrochemicalMethods Integrated with Spectral Technology for Detection of PTS 473 
Yi-Xiang Li, Tian-Jia Jiang, and Xing-Jiu Huang

11.1 Introduction 473

11.2 Electrochemical Integrated with X-ray Fluorescence 474

11.2.1 Electrodeposition-assisted X-ray Fluorescence 474

11.2.1.1 Application: Electrodeposition-assisted X-ray Fluorescence for the Quantitative Determination of HMIs 475

11.2.2 Electroadsorption-assisted X-ray Fluorescence 479

11.2.2.1 Application: Electroadsorption-assisted Direct Determination of Trace ArsenicWithout Interference Using XRF 480

11.3 Electrochemical Integrated with Laser-induced Breakdown Spectroscopy 484

11.3.1 Electrodeposition-assisted Laser-induced Breakdown Spectroscopy 485

11.3.1.1 Application: Electrochemical LIBS for Enhanced Detection of Cd(II) Without Interference in Complex Environmental Sample (Rice) 485

11.3.1.2 Application: On-site Quantitative Elemental Analysis of Metal Ions in Aqueous Solutions by Underwater Laser-induced Breakdown Spectroscopy Combined with Electrodeposition Under Controlled Potential 490

11.3.2 Electroadsorption-assisted Laser-induced Breakdown Spectroscopy 496

11.3.2.1 Application: In Situ Underwater LIBS Analysis for Trace Cr(VI) in Aqueous Solution Supported by Electrosorption Enrichment and a Gas-assisted Localized Liquid Discharge Apparatus 497

11.4 Conclusions and Outlook 502

References 503

12 Conclusion and Perspectives 513 
Shan-Shan Li and Xing-Jiu Huang

References 516

Index 521

Authors

Xing Chen Meng Yang Xing-Jiu Huang