+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Geophysical Data Analysis. Discrete Inverse Theory. Edition No. 4

  • Book

  • April 2018
  • Elsevier Science and Technology
  • ID: 4430083

Geophysical Data Analysis: Diverse Inverse Theory, Fourth Edition is a revised and expanded introduction to inverse theory and tomography as it is practiced by geophysicists. It demonstrates the methods needed to analyze a broad spectrum of geophysical datasets, with special attention to those methods that generate images of the earth. Data analysis can be a mathematically complex activity, but the treatment in this volume is carefully designed to emphasize those mathematical techniques that readers will find the most familiar and to systematically introduce less-familiar ones.

Using problems and case studies, along with MATLAB computer code and summaries of methods, the book provides data scientists and engineers in geophysics with the tools necessary to understand and apply mathematical techniques and inverse theory.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

1. Describing Inverse Problems 2. Some Comments on Probability Theory 3. Solution of the Linear, Gaussian Inverse Problem, Viewpoint 1: The Length Method 4. Solution of the Linear, Gaussian Inverse Problem, Viewpoint 2: Generalized Inverses 5. Solution of the Linear, Gaussian Inverse Problem, Viewpoint 3: Maximum Likelihood Methods 6. Nonuniqueness and Localized Averages 7. Applications of Vector Spaces 8. Linear Inverse Problems and Non-Gaussian Statistics 9. Nonlinear Inverse Problems 10. Factor Analysis 11. Continuous Inverse Theory and Tomography 12. Sample Inverse Problems 13. Applications of Inverse Theory to Solid Earth Geophysics

Authors

William Menke Professor, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA. William Menke is a Professor of Earth and Environmental Sciences at Columbia University, USA. His research focuses on the development of data analysis algorithms for time series analysis and imaging in the earth and environmental sciences and the application of these methods to volcanoes, earthquakes and other natural hazards.