+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Rational Design of Solar Cells for Efficient Solar Energy Conversion. Edition No. 1

  • Book

  • 400 Pages
  • November 2018
  • John Wiley and Sons Ltd
  • ID: 4458228

An interdisciplinary guide to the newest solar cell technology for efficient renewable energy

Rational Design of Solar Cells for Efficient Solar Energy Conversion explores the development of the most recent solar technology and materials used to manufacture solar cells in order to achieve higher solar energy conversion efficiency. The text offers an interdisciplinary approach and combines information on dye-sensitized solar cells, organic solar cells, polymer solar cells, perovskite solar cells, and quantum dot solar cells.

The text contains contributions from noted experts in the fields of chemistry, physics, materials science, and engineering. The authors review the development of components such as photoanodes, sensitizers, electrolytes, and photocathodes for high performance dye-sensitized solar cells. In addition, the text puts the focus on the design of material assemblies to achieve higher solar energy conversion.  This important resource: 

  • Offers a comprehensive review of recent developments in solar cell technology
  • Includes information on a variety of solar cell materials and devices, focusing on dye-sensitized solar cells
  • Contains a thorough approach beginning with the fundamental material characterization and concluding with real-world device application.
  • Presents content from researchers in multiple fields of study such as physicists, engineers, and material scientists

Written for researchers, scientists, and engineers in university and industry laboratories, Rational Design of Solar Cells for Efficient Solar Energy Conversion offers a comprehensive review of the newest developments and applications of solar cells with contributions from a range of experts in various disciplines.

Table of Contents

Biographies xiii

List of Contributors xv

Preface xix

1 Metal Nanoparticle Decorated ZnO Nanostructure Based Dye‐Sensitized Solar Cells 1
Gregory Thien Soon How, Kandasamy Jothivenkatachalam, Alagarsamy Pandikumar, and Nay Ming Huang

1.1 Introduction 1

1.2 Metal Dressed ZnO Nanostructures as Photoanodes 3

1.2.1 Metal Dressed ZnO Nanoparticles as Photoanodes 4

1.2.2 Metal Dressed ZnO Nanorods as Photoanodes 6

1.2.3 Metal Dressed ZnO Nanoflowers as Photoanodes 8

1.2.4 Metal Dressed ZnO Nanowires as Photoanodes 8

1.2.5 Less Common Metal Dressed ZnO Nanostructures as Photoanodes 10

1.2.6 Comparison of the Performance of Metal Dressed ZnO Nanostructures in DSSCs 10

1.3 Conclusions and Outlook 11

References 13

2 Cosensitization Strategies for Dye‐Sensitized Solar Cells 15
Gachumale Saritha, Sambandam Anandan, and Muthupandian Ashokkumar

2.1 Introduction 15

2.2 Cosensitization 18

2.2.1 Cosensitization of Metal Complexes with Organic Dyes 19

2.2.1.1 Phthalocyanine‐based Metal Complexes 19

2.2.1.2 Porphyrin‐based Metal Complexes 21

2.2.1.3 Ruthenium‐based Metal Complexes 27

2.2.2 Cosensitization of Organic-Organic Dyes 41

2.3 Conclusions 51

Acknowledgements 51

References 52

3 Natural Dye‐Sensitized Solar Cells - Strategies and Measures 61
N. Prabavathy, R. Balasundaraprabhu, and Dhayalan Velauthapillai

3.1 Introduction 61

3.1.1 Mechanism of the Dye‐Sensitized Solar Cell Compared with the Z‐scheme of Photosynthesis 62

3.2 Components of Dye‐sensitized Solar Cell 63

3.2.1 Photoelectrode 63

3.2.2 Dye 64

3.2.3 Liquid Electrolyte 64

3.2.4 Counterelectrode 65

3.3 Fabrication of Natural DSSCs 65

3.3.1 Preparation of TiO2 Nanorods by the Hydrothermal Method 65

3.3.2 Characterization of the Photoelectrode for DSSCs 66

3.3.3 Preparation of Natural Dye 67

3.3.4 Sensitization 68

3.3.5 Arrangement of the DSSC 68

3.4 Efficiency and Stability Enhancement in Natural Dye‐Sensitized Solar Cells 68

3.4.1 Effect of Photocatalytic Activity of TiO2 Molecules on the Photostability of Natural Dyes 69

3.4.1.1 Important Points to be Considered for the Preparation of Photoelectrodes 70

3.4.2 Citric Acid - Best Solvent for Extracting Anthocyanins 70

3.4.3. Algal Buffer Layer to Improve Stability of Anthocyanins in DSSCs 72

3.4.3.1 Preparation of Buffer Layers - Sodium Alginate and Spirulina 73

3.4.4 Sodium‐doped Nanorods for Enhancing the Natural DSSC Performance 75

3.4.4.1 Preparing Sodium‐doped Nanorods as the Photoelectrode 75

3.4.5 Absorber Material for Liquid Electrolytes to Avoid Leakage 77

3.5 Other Strategies and Measures taken in DSSCs Using Natural Dyes 79

3.6 Conclusions 82

References 82

4 Advantages of Polymer Electrolytes for Dye‐Sensitized Solar Cells 85
L.P. Teo and A.K. Arof

4.1 Why Solar Cells? 85

4.2 Structure and Working Principle of DSSCs with Gel Polymer Electrolytes (GPEs) 86

4.3 Gel Polymer Electrolytes (GPEs) 87

4.3.1 Chitosan (Ch) and Blends 88

4.3.2 Phthaloylchitosan (PhCh) and Blends 91

4.3.3 Poly(Vinyl Alcohol) (PVA) 98

4.3.4 Polyacrylonitrile (PAN) 105

4.3.5 Polyvinylidene Fluoride (PVdF) 109

4.4 Summary and Outlook 110

Acknowledgements 111

References 111

5 Advantages of Polymer Electrolytes Towards Dye‐sensitized Solar Cells 121
Nagaraj Pavithra, Giovanni Landi, Andrea Sorrentino, and Sambandam Anandan

5.1 Introduction 121

5.1.1 Energy Demand 121

5.1.1.1 Generation of Solar Cells 122

5.1.2 Types of Electrolyte Used in Third Generation Solar Cells 124

5.1.2.1 Liquid Electrolytes (LEs) 124

5.1.2.2 Room Temperature Ionic Liquids (RTILs) 125

5.1.2.3 Solid State Hole Transport Materials (SS‐HTMs) 126

5.2 Polymer Electrolytes 127

5.2.1 Mechanism of Ion Transport in Polymer Electrolytes 128

5.2.2 Types of Polymer Electrolyte 129

5.2.2.1 Solid Polymer Electrolytes 129

5.2.2.2 Gel Polymer Electrolytes 129

5.2.2.3 Composite Polymer Electrolyte 130

5.3 Dye‐ sensitized Solar Cells 130

5.3.1 Components and Operational Principle 131

5.3.1.1 Substrate 133

5.3.1.2 Photoelectrode 134

5.3.1.3 Photosensitizer 135

5.3.1.4 Redox Electrolyte 137

5.3.1.5 Counter Electrode 140

5.3.2 Application of Polymer Electrolytes in DSSCs 140

5.3.2.1 Solid‐state Dye-Sensitized Solar Cells (SS‐DSSCs) 140

5.3.2.2 Quasi‐solid‐state Dye-Sensitized Solar Cells (QS‐DSSC) 142

5.3.2.3 Types of Additives in GPEs 144

5.3.3 Bifacial DSSCs 148

5.4 Quantum Dot Sensitized Solar Cells (QDSSC) 150

5.5 Perovskite‐ Sensitized Solar Cells (PSSC) 152

5.6 Conclusion 153

Acknowledgements 154

References 154

6 Rational Screening Strategies for Counter Electrode Nanocomposite Materials for Efficient Solar Energy Conversion 169
Prabhakarn Arunachalam

6.1 Introduction 169

6.2 Principles of Next Generation Solar Cells 171

6.2.1 Dye‐sensitized Solar Cells 171

6.2.2 Principles of Quantum Dot Sensitized Solar Cells 173

6.2.3 Principles of Perovskite Solar Cells 174

6.3 Platinum‐ free Counterelectrode Materials 175

6.3.1 Carbon‐based Materials for Solar Energy Conversion 175

6.3.2 Metal Nitride and Carbide Materials 178

6.3.3 Metal Sulfide Materials 179

6.3.4 Composite Materials 182

6.3.5 Metal Oxide Materials 183

6.3.6 Polymer Counterelectrodes 184

6.4 Summary and Outlook 185

References 186

7 Design and Fabrication of Carbon‐based Nanostructured Counter Electrode Materials for Dye‐sensitized Solar Cells 193
Jayaraman Theerthagiri, Raja Arumugam Senthil, and Jagannathan Madhavan

7.1 Photovoltaic Solar Cells - An Overview 193

7.1.1 First Generation Solar Cells 194

7.1.2 Second Generation Solar Cells 194

7.1.3 Third Generation Solar Cells 194

7.1.4 Fourth Generation Solar Cells 195

7.2 Dye‐ sensitized Solar Cells 195

7.2.1 Major Components of DSSCs 196

7.2.1.1 Transparent Conducting Glass Substrate 197

7.2.1.2 Photoelectrode 197

7.2.1.3 Dye Sensitizer 198

7.2.1.4 Redox Electrolytes 199

7.2.1.5 Counterelectrode 200

7.2.2 Working Mechanism of DSSCs 200

7.3 Carbon‐ based Nanostructured CE Materials for DSSCs 201

7.4 Conclusions 216

References 217

8 Highly Stable Inverted Organic Solar Cells Based on Novel Interfacial Layers 221
Fang Jeng Lim and Ananthanarayanan Krishnamoorthy

8.1 Introduction 221

8.2 Research Areas in Organic Solar Cells 222

8.3 An Overview of Inverted Organic Solar Cells 224

8.3.1 Transport Layers in Inverted Organic Solar Cells 227

8.3.2 PEDOT:PSS Hole Transport Layer 227

8.3.3 Titanium Oxide Electron Transport Layer 229

8.4 Issues in Inverted Organic Solar Cells and Respective Solutions 232

8.4.1 Wettability Issue of PEDOT:PSS in Inverted Organic Solar Cells 233

8.4.2 Light‐soaking Issue of TiOx‐based Inverted Organic Solar Cells 234

8.5 Overcoming the Wettability Issue and Light‐soaking Issue in Inverted Organic Solar Cells 235

8.5.1 Fluorosurfactant‐modified PEDOT:PSS as Hole Transport Layer 235

8.5.2 Fluorinated Titanium Oxide as Electron Transport Layer 239

8.6 Conclusions and Outlook 245

Acknowledgements 246

References 246

9 Fabrication of Metal Top Electrode via Solution‐based Printing Technique for Efficient Inverted Organic Solar Cells 255
Navaneethan Duraisamy, Kavitha Kandiah, Kyung‐Hyun Choi, Dhanaraj Gopi, Ramesh Rajendran, Pazhanivel Thangavelu, and Maadeswaran Palanisamy

9.1 Introduction 255

9.2 Organic Photovoltaic Cells 257

9.3 Working Principle 258

9.4 Device Architecture 260

9.4.1 Single Layer or Monolayer Device 260

9.4.2 Planar Heterojunction Device 261

9.4.3 Bulk Heterojunction Device 261

9.4.4 Ordered Bulk Heterojunction Device 261

9.4.5 Inverted Organic Solar Cells 262

9.5 Fabrication Process 263

9.5.1 Hybrid‐EHDA Technique 263

9.5.1.1 Flow Rate 265

9.5.1.2 Applied Potential 265

9.5.1.3 Pneumatic Pressure 265

9.5.1.4 Stand‐off Distance 265

9.5.1.5 Nozzle Diameter 266

9.5.1.6 Ink Properties 266

9.5.2 Mode of Atomization 267

9.5.2.1 Dripping Mode 267

9.5.2.2 Unstable Spray Mode 267

9.5.2.3 Stable Spray Mode 267

9.6 Fabrication of Inverted Organic Solar Cells 267

9.6.1 Deposition of Zinc Oxide (ZnO) on ITO Substrate 268

9.6.2 Deposition of P3HT:PCBM 268

9.6.3 Deposition of PEDOT:PSS 268

9.6.4 Deposition of Silver as a Top Electrode 269

9.7 Device Morphology 272

9.8 Device Performance 273

9.9 Conclusion 277

Acknowledgements 277

References 277

10 Polymer Solar Cells - An Energy Technology for the Future 283

Alagar Ramar and Fu‐Ming Wang

10.1 Introduction 283

10.2 Materials Developments for Bulk Heterojunction Solar Cells 284

10.2.1 Conjugated Polymer-Fullerene Solar Cells 284

10.2.2 Non‐Fullerene Polymer Solar Cells 289

10.2.3 All‐Polymer Solar Cells 290

10.3 Materials Developments for Molecular Heterojunction Solar Cells 291

10.3.1 Double‐cable Polymers 291

10.4 Developments in Device Structures 293

10.4.1 Tandem Solar Cells 295

10.4.2 Inverted Polymer Solar Cells 297

10.5 Conclusions 300

Acknowledgements 300

References 301

11 Rational Strategies for Large‐area Perovskite Solar Cells: Laboratory Scale to Industrial Technology 307
Arunachalam Arulraj and Mohan Ramesh

11.1 Introduction 307

11.2 Perovskite 308

11.3 Perovskite Solar Cells 309

11.3.1 Architecture 310

11.3.1.1 Mesoporous PSCs 310

11.3.1.2 Planar PSCs 313

11.4 Device Processing 313

11.4.1 Solvent Engineering 313

11.4.2 Compositional Engineering 314

11.4.3 Interfacial Engineering 314

11.5 Enhancing the Stability of Devices 316

11.5.1 Deposition Techniques 317

11.5.1.1 Spin Coating 317

11.5.1.2 Blade Coating 319

11.5.1.3 Slot Die Coating 320

11.5.1.4 Screen Printing 321

11.5.1.5 Spray Coating 324

11.5.1.6 Laser Patterning 324

11.5.1.7 Roll‐to‐Roll Deposition 325

11.5.1.8 Other Large Area Deposition Techniques 326

11.6 Summary 329

Acknowledgement 329

References 329

12 Hot Electrons Role in Biomolecule‐based Quantum Dot Hybrid Solar Cells 339
T. Pazhanivel, G. Bharathi, D. Nataraj, R. Ramesh, and D. Navaneethan

12.1 Introduction 339

12.2 Classifications of Solar Cells 341

12.2.1 Inorganic Solar Cells 342

12.2.2 Organic Solar Cells (OSCs) 343

12.2.3 Hybrid Solar Cells 344

12.3 Main Losses in Solar Cells 344

12.3.1 Recombination Loss 345

12.3.2 Contact Losses 345

12.4 Hot Electron Concept in Materials 346

12.5 Methodology 347

12.5.1 Hot Injection Method 348

12.5.1.1 Nucleation and Growth Stages 349

12.5.1.2 Merits of this Method 350

12.6 Material Synthesis 350

12.6.1 CdSe QD Preparation 350

12.6.2 QD-βC Hybrid Formation 351

12.7 Identification of Hot Electrons 351

12.7.1 Photoluminescence (PL) Spectrum 351

12.7.2 Time‐correlated Single Photon Counting (TCSPC) 355

12.7.3 Transient Absorption 357

12.8 Quantum Dot Sensitized Solar Cells 360

12.8.1 Working Principle 360

12.8.2 Device Preparation 361

12.8.2.1 Preparation of TiO2 Nanoparticle Electrode 361

12.8.2.2 QDs Deposition on TiO2 Nanoparticle 362

12.8.2.3 Counterelectrode and Assembly of QDSSC 362

12.8.3 Performance 362

12.9 Conclusion 363

References 363

Index 369

Authors

Alagarsamy Pandikumar Ramasamy Ramaraj