Nanomaterials for Magnetic and Optical Hyperthermia Applications focuses on the design, fabrication and characterization of nanomaterials (magnetic, gold and hybrid magnetic-gold nanoparticles) for in vitro and in vivo hyperthermia applications, both as standalone and adjuvant therapy in combination with chemotherapy. The book explores the potential for more effective cancer therapy solutions through the synergistic use of nanostructured materials as magnetic and optical hyperthermia agents and targeted drug delivery vehicles, while also discussing the challenges related to their toxicity, regulatory and translational aspects. In particular, the book focuses on the design, synthesis, biofunctionalization and characterization of nanomaterials employed for magnetic and optical hyperthermia.
This book will be an important reference resource for scientists working in the areas of biomaterials and biomedicine seeking to learn about the potential of nanomaterials to provide hyperthermia solutions.
Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.
Table of Contents
Part 1. Introduction to hyperthermia 1. Basic concepts of hyperthermia 2. Cellular response to heat stress 3. Hyperthermia for combined cancer therapy 4. Current status of clinical trials in hyperthermia 5. Hyperthermia at the nanoscale why nanomaterials? 6. Fundamentals of magnetic and optical hyperthermia
Part 2. Magnetic hyperthermia 1. Interaction of magnetic nanoparticles with alternating magnetic fields (Q. Pankhurst) 2. Mechanisms of magnetic heat generation (Q. Pankhurst, T. Pellegrino) 3. Design and synthesis of MNPs for hyperthermia applications 4. In vitro magnetic hyperthermia: influence of subcellular localization of magnetic nanoparticles on their heating efficiency 5. Sub-lethal magnetic hyperthermia: cellular response to mild heat stress 6. Current status of in vivo application of magnetic hyperthermia for cancer treatment
Part 3. Optical hyperthermia 1. Principles of optical hyperthermia (J. C. Bischof) 2. Gold plasmonic nanoparticles as photothermal therapy agents 3. Graphene based nanomaterials for optical hyperthermia applications 4. Novel nanomaterials for photothermal therapy 5. In vitro applications: mechanism of cell death induced by optical hyperthermia 6. Current status of in vivo photothermal therapy applications
Part 4. Synergistic modalities 1. Synergistic effect of dual magnetic/optical heating 2. Hybrid magnetic-plasmonic nanomaterials for bimodal hyperthermia 3. Smart multifunctional magnetic nanoparticles for combined drug delivery and magnetic hyperthermia