InGaAs Avalanche Photodiodes for Ranging and Lidar discusses the materials, physics, and design considerations of avalanche photodiodes (APDs) developed for 3D imaging sensors, which will enable self-driving cars and autonomously navigating drones.
The book provides a detailed theoretical understanding of all types of APD, including the semiconductor physics underlying device function and the mathematics of avalanche noise. Both linear- and Geiger-mode operation of APDs are addressed, and contemporary research on APDs manufactured from a variety of different material systems is reviewed. The approach unites a theoretical treatment of common figures of merit with a practical discussion of how they impact sensor system performance. Models are developed for the sensitivity, maximum effective range, and ranging precision of time-of-flight APD photoreceiver circuits.
Linear-mode InGaAs APDs are of particular relevance to 3D imaging owing to their compatibility with eye-safe lasers, and the maturity of the material system, for which substantial commercial foundry capacity exists. The author uses InGaAs APDs to demonstrate the book's design calculations, which are compared to the representative empirical data, and as the basis for discussions of device structure and manufacturing.
rPlease Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.
Table of Contents
1. Types of avalanche photodiode 2. Avalanche photodiode figures of merit 3. APD photoreceivers for range-finding and lidar 4. Linear-mode InGaAs APD design and manufacture Appendix: Semiconductor physics
Authors
Andrew S. Huntington Voxtel Inc, Beaverton, Oregon, USA. Dr. Andrew Huntington manages Voxtel's Semiconductor Detector and Device Development Group since 2004 and is responsible for Voxtel's advanced development efforts relating to semiconductor devices, material growth, device modeling, and detector design and development efforts. He invented and patented Voxtel's advanced high-gain, low-excess-noise SCM-APD technologies, and has supported this important device's development through Monte Carlo modeling and experimental extraction of the material's properties. He has also managed the development of Voxtel's array process and APD-based commercial products. The detector projects Dr. Huntington has conducted include Geiger- and linear-mode SOI CMOS and InGaAs-based APDs for the NIR; HgCdTe APDs for the SWIR, MWIR, and LWIR; and silicon-based linear APDs for visible and X ray applications. He has a number of publications detailing this work.Prior to joining Voxtel, Dr. Huntington performed his doctoral studies in materials at the University of California, Santa Barbara (L. Coldren Group), where his dissertation work included development of low-noise and broad-area InGaAs/InAlAs APDs. Dr. Huntington developed his expertise in the production of APD wafers by molecular beam epitaxy, with particular emphasis on understanding the relationship between growth conditions, material quality, and device performance.