Signal Processing for Multistatic Radar Systems: Adaptive Waveform Selection, Optimal Geometries and Pseudolinear Tracking Algorithms addresses three important aspects of signal processing for multistatic radar systems, including adaptive waveform selection, optimal geometries and pseudolinear tracking algorithms. A key theme of the book is performance optimization for multistatic target tracking and localization via waveform adaptation, geometry optimization and tracking algorithm design. Chapters contain detailed mathematical derivations and algorithmic development that are accompanied by simulation examples and associated MATLAB codes. This book is an ideal resource for university researchers and industry engineers in radar, radar signal processing and communications engineering.
Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.
Table of Contents
1. IntroductionPart 1. Adaptive waveform selection
2. Waveform selection for multistatic tracking of a maneuvering Target
3. Waveform selection for multistatic target tracking in clutter
4. Waveform selection for multistatic target tracking with Cartesian estimates
5. Waveform selection for distributedmultistatic target tracking
Part 2. Optimal geometry analysis
6. Optimal geometries for multistatic target localization with one transmitter and multiple receivers
7. Optimal geometries for multistatic target localization by independent bistatic channels
Part 3. Pseudolinear tracking algorithms
8. Batch track estimators formultistatic target motion analysis
9. Closed-form solutions for multistatic target localization with time-difference-of-arrival measurements