Additive and Traditionally Manufactured Components: A Comparative Analysis of Mechanical Properties looks at the mechanical properties of materials produced by additive manufacturing (AM) and compares them with conventional methods. Since the production of objects by AM techniques can used in a broad array of materials, the alloys presented are the ones most commonly produced by AM - Al alloys, Ti alloys and steel. The book explores the six main types of techniques: Fused Deposition Method (FDM), Powder Bed Fusion (PBF), Inkjet Printing, Stereolithography (SLA), Direct Energy Deposition (DED) and Laminated Object Manufacturing (LOM), and follows with the techniques being utilized for fabrication.
Testing of AM fabricated specimens, including tension, compression and hardness is included, along with a comparison of those results to specimens obtained by conventional fabrication methods. Topics covered include static deformation, time dependent deformation (creep), cyclic deformation (fatigue) and fracture in specimens. The book concludes with a review of the mechanical properties of nanoscale specimens obtained by AM.
Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.
Table of Contents
1. What is additive manufacturing?2. Fabrication3. Testing: Comparison of AM data with traditionally fabricated4. Dislocations in AM and traditional manufacturing: A comparison5. Deformation in AM and traditional manufacturing: A comparison6. Dynamic deformation7. Time-dependent deformation creep in AM and traditional manufacturing8. Cyclic deformation (fatigue) in AM and traditional manufacturing: A comparison9. Fracture in AM and traditional manufactured components10. Comparison of deformation in AM and CP nanomaterials11. Epilogue