+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

The Global Quantum Dots Market 2025-2035

  • PDF Icon

    Report

  • 315 Pages
  • March 2025
  • Region: Global
  • Future Markets, Inc
  • ID: 5105768

Quantum dots represent one of the most significant advancements in semiconductor nanocrystal technology of the past two decades. These microscopic particles, typically measuring between 2-10 nanometers in diameter, possess extraordinary optical and electronic properties that derive from quantum confinement effects. Composed primarily of semiconductor materials such as cadmium selenide, indium phosphide, or perovskites, quantum dots exhibit precise size-dependent emission wavelengths, allowing them to produce highly pure and tunable colours when excited by light sources.

The fundamental advantage of quantum dots lies in their exceptional colour performance characteristics. When stimulated by blue or ultraviolet light, these nanocrystals emit light at specific wavelengths determined primarily by their physical size rather than their material composition. This property enables manufacturers to create precisely engineered color profiles by controlling quantum dot dimensions during synthesis. Smaller quantum dots (2-3nm) emit blue light, mid-sized dots (3-5nm) produce green light, and larger dots (6-8nm) generate red light, all with extremely narrow spectral width that translates to exceptional colour purity.

In display applications, which currently represent the dominant commercial market for quantum dots, these materials have revolutionized LCD technology through quantum dot enhancement films (QDEF). These films, placed between the LED backlight and LCD panel, convert blue LED light into precisely tuned red and green light that, when combined with the original blue source, creates a significantly wider color gamut and improved brightness efficiency compared to conventional LCD displays. Leading manufacturers including Samsung, TCL, Sony, and Hisense have widely adopted this technology in premium televisions marketed as "QLED" displays.

Beyond display technologies, quantum dots are finding emerging applications in several high-growth sectors. Biomedical imaging has embraced quantum dots as fluorescent markers for cellular and molecular imaging, offering superior brightness and photostability compared to traditional organic dyes. The photovoltaic industry is exploring quantum dot solar cells that can potentially exceed the theoretical efficiency limits of conventional silicon cells through processes like singlet fission and multiple exciton generation. Additionally, quantum dot sensors leveraging the materials' tunable absorption properties are being developed for specialized applications in environmental monitoring, security, and medical diagnostics.

The future outlook for quantum dots appears exceptionally promising as the technology continues to mature. Current research focuses on cadmium-free compositions to address environmental regulations, with indium phosphide and perovskite quantum dots showing particular promise. Manufacturing methods are evolving from solution-based batch processing toward continuous flow processes that improve consistency while reducing production costs. Advanced integration approaches including electroluminescent quantum dot displays (QD-EL or QLED), which use quantum dots as direct emissive elements rather than color converters, represent the next technological frontier with the potential to rival OLED performance while offering better durability and efficiency.

As production volumes increase and manufacturing processes mature, quantum dots are expected to penetrate mid-range consumer electronics, expand into automotive displays, and establish significant presence in emerging applications including augmented reality displays, advanced lighting, and security features. This evolution from a premium display enhancement technology to a fundamental component across multiple industries underscores quantum dots' transformative potential in fields requiring precisely engineered light emission and detection capabilities.

The Global Quantum Dots Market 2025-2035 provides an in-depth exploration of quantum dots (QDs) across multiple industries, showcasing their potential to revolutionize displays, photovoltaics, lighting, biotechnology, and beyond.

Report contents include:

Market Scope and Potential

  • Comprehensive analysis of quantum dot technologies from 2025 to 2035
  • Detailed examination of global market revenues across multiple sectors
  • Extensive coverage of technological innovations and market drivers

Market Segments and Applications

  • Display Technologies
    • Comprehensive analysis of QD-LCD, QLED, and QD-OLED technologies
    • Detailed examination of MiniLED and MicroLED display innovations
    • Market projections for quantum dot TV and monitor markets
  • Photovoltaics
    • Exploration of quantum dot solar cell technologies
    • Analysis of efficiency records and market potential
    • Detailed review of emerging solar applications
  • Lighting and Illumination
    • In-depth study of quantum dot LED lighting
    • Market trends in horticultural and commercial lighting
    • Performance metrics and technological advancements
  • Biotechnology and Medicine
    • Applications in fluorescent labeling
    • Drug delivery innovations
    • Biosensing and diagnostic technologies
  • Emerging Technologies
    • Photonics and photodetectors
    • Security and anti-counterfeiting solutions
    • Quantum computing applications
    • Specialized markets including AgriTech, batteries, and autonomous vehicle sensors

Technological Insights

  • Comprehensive review of quantum dot types
  • Detailed analysis of synthesis methods
  • Comparison of cadmium-based and cadmium-free quantum dots
  • Exploration of emerging quantum dot materials (perovskite, graphene, carbon quantum dots)

Market Dynamics

  • Global market revenues from 2016 to 2035
  • Regional market analysis
  • Supply chain and production capacities
  • Licensing, collaborations, and partnerships

Regulatory Landscape

  • Global quantum dot regulations
  • Compliance and market entry considerations

Competitive Landscape

  • Profiles of over 120 quantum dot producers and product developers, including Aeluma, Applied Quantum Materials, Attonuclei, AUO Optronics, Avantama AG, Biographene, Bio Square, BOE Technology Group, BrightComSol, Canon, Carbon Upcycling Technologies, Chang Chun Tuo Cai Technology, China Beijing Beida Jubang Science & Technology, China Star (CSoT), The Coretec Group, Core Quantum Technologies, Creative Diagnostics, CrystalPlex Corporation, Cytodiagnostics, DuPont, Dai Nippon Toryo, Diraq, Dotz Nano, Efun Technology, Emberion, Emfutur Technologies, ENano Tec, Equal1 Laboratories, Ergis Group, GoLeafe, Graphene Square, Green Science Alliance, Hansol Chemical, Helio Display Materials, HP Inc., HiSense, IQDEMY Quantum Technology, Innolux Corporation, Innoqd, Intematix Corporation, Kateeva, KRI, Merck KGaA, LG Display, LMS, Lumileds, Luminit, ML System, Najing Technology, Nanoco Group, Nano-Lit Technologies, Nanolumi, Nanooptical Materials, Nanosquare, Nanosys, Nanoxo, Nexdot, Nippon Chemical Industrial, NN-Labs, NS Materials, Ocean Nanotech, Ossila, Osram Opto Semiconductors, Particle Works, Perotech, PhosphorTech and more.....

Table of Contents

1           EXECUTIVE SUMMARY
1.1        Growth in high definition TV demand
1.2        Consumer display trends
1.3        Quantum dot display (QD-OLED and QD-LCD) products
1.4        QD advantages
1.5        Recent market growth
1.6        QD-TV market
1.6.1     The Quantum Dot TV market in 2024
1.7        Cadmium vs. cadmium free
1.7.1     Cadmium QDs
1.7.2     Cadmium-free QDs
1.7.3     Perovskite quantum dots
1.7.4     Graphene quantum dots
1.8        Market drivers and trends for quantum dots
1.9        Market outlook for quantum dots (5-10 years)
1.10      Market challenges for quantum dots

2           INTRODUCTION
2.1        Properties
2.1.1     Mode of operation
2.2        Synthesis
2.3        Types of quantum dots
2.3.1     Cadmium Selenide, Cadmium Sulfide and other materials
2.3.2     Cadmium free quantum dots
2.4        Two-dimensional quantum dots
2.5        QDs optimization
2.6        Carbon quantum dots (CDs)
2.6.1     Properties
2.6.2     Applications
2.7        Graphene quantum dots (GQDs)
2.7.1     Properties
2.7.2     Synthesis
2.7.3     Applications
2.7.3.1  Pricing
2.7.4     Producers
2.8        Perovskite quantum dots (PQDs)
2.8.1     Properties
2.8.2     Comparison to conventional quantum dots
2.8.3     Synthesis methods
2.8.4     Applications
2.8.4.1  Displays
2.8.5     Producers
2.9        Quantum rods
2.9.1     Properties
2.9.2     Applications
2.10      Narrow band gap phosphors

3           QUANTUM DOTS REGULATIONS
4           QUANTUM DOTS MANUFACTURING FOR DISPLAYS
4.1        Transfer Printing
4.1.1     Intaglio transfer-printing 1
4.1.2     Intaglio transfer-printing 2
4.1.3     Immersion transfer printing
4.1.4     Transfer of multi-layers
4.2        Ink-Jet Printing
4.2.1     Ink formation
4.2.2     Curing methods
4.2.3     Inkjet-printed QD
4.3        Photolithography
4.3.1     QD photoresist

5           THE GLOBAL MARKET FOR QUANTUM DOTS
5.1        Markets and applications
5.2        Licensing, collaborations and partnerships
5.3        Supply chain
5.4        Production capacities
5.5        Global revenues 2018-2035
5.5.1     By end use market
5.5.2     By region

6           QUANTUM DOTS IN DISPLAYS
6.1        Market drivers and trends
6.2        Market supply chain
6.3        Technology roadmap
6.4        Comparative analysis of display types
6.4.1     LCDS vs. OLEDs vs. QD-LCDs/QLEDs
6.4.1.1  Liquid Crystal Displays (LCD)
6.4.1.2  Comparison with Phosphors
6.5        QD-LCD TVs/QLEDs
6.6        QD Photo-Enhanced Displays
6.6.1     QD Display Types
6.6.2     QD on edge
6.6.3     QDEF
6.6.4     Quantum Dot on Glass
6.6.5     xQDEF
6.6.6     Samsung QLED
6.6.7     LG's Nano Cell Display
6.7        QD Photo-Emissive Displays
6.7.1     Overview
6.7.2     QD on Chip
6.7.3     QD-OLED displays
6.7.4     Samsung QD-OLED display
6.7.5     Quantum wells
6.8        Electroluminescent Quantum Displays (EL-QDs/QD-LEDs),
6.8.1     Overview
6.8.2     QLED development
6.8.3     Blue QLED
6.8.4     QD emissive display solution
6.8.5     Commercial development
6.8.5.1  Sharp
6.8.5.2  BOE
6.8.5.3  Samsung
6.8.5.4  Nanoys
6.9        MiniLED QD Displays
6.9.1     Comparison to LCD and OLED
6.9.2     Advantages and disadvantages
6.9.3     Backplane types
6.9.3.1  Passive matrix driving miniLED
6.9.4     Costs
6.9.5     High dynamic range miniLED displays
6.9.6     Trends in MiniLED displays
6.9.7     Quantum dot films for miniLED displays
6.9.8     Perovskite colour enhancement film in Mini-LEDs
6.9.9     Eyesafe QD
6.9.10   QD-Mini-LED-BLU
6.9.11   Perovskite colour enhancement film in MiniLEDs
6.10      MicroLED QD Displays
6.10.1   Development
6.10.2   Types
6.10.3   Comparison to LCD and OLED
6.10.4   MicroLED displays
6.10.4.1            Advantages
6.10.4.2            Transparency
6.10.4.3            Borderless
6.10.4.4            Flexibility
6.10.5  Costs
6.10.6  Manufacturing
6.10.6.1            Epitaxy and Chip Processing
6.10.6.1.1        Uniformity
6.10.6.2            Assembly Technologies
6.10.6.2.1        Monolithic fabrication of microdisplays
6.10.6.2.2        Mass transfer
6.10.6.2.3        Mass Transfer Processes
6.10.6.2.3.1   Elastomer Stamp Transfer
6.10.6.2.3.2   Roll-to-Roll or Roll-to-Panel Imprinting
6.10.6.2.3.3   Laser-induced forward transfer (LIFT)
6.10.6.2.3.4   Electrostatic Transfer
6.10.6.2.3.5   Micro vacuum-based transfer
6.10.6.2.3.6   Adhesive Stamp
6.10.6.2.3.7   Fluidically Self-Assembled Transfer
6.10.6.3            Full colour conversion
6.10.6.3.1        Phosphor Colour Conversion LEDs
6.10.6.3.2        Quantum dots colour conversion
6.10.7  QDCC for micro-LED displays
6.10.8  Flexible QD displays
6.10.8.1            Flexible QLEDs
6.10.8.2            Foldable QLED
6.10.9  Global market revenues
6.10.9.1            QD-TV unit sales 2016-2035
6.10.9.2            QD-TV revenues 2016-2035
6.10.9.3            QD monitor unit sales 2016-2035
6.10.9.4            QD monitor revenues 2016-2035
6.11     PHOTOVOLTAICS
6.11.1  QD PV efficiency records
6.11.2  Market drivers and trends
6.11.3  Applications
6.11.3.1            Advantages of quantum dots in photovoltaics
6.11.4  Types of quantum dot solar cells
6.11.4.1            Tandem Solar Cells
6.11.4.2            Metal - semiconductor/ Schottky QD junction solar cell
6.11.4.3            Silicon/QD Film Hydrid Solar Cells
6.11.4.4            Silicon/Graphene QD Film Hydrid Solar Cells
6.11.4.5            Depleted-heterojunction QD solar cell
6.11.4.6            QD-sensitized solar cells (QDSSC)
6.11.4.7            Quantum dot solar windows
6.11.5  Market challenges
6.11.6  Companies
6.11.7  Global market revenues
6.12     LIGHTING
6.12.1  Market drivers and trends
6.12.2  Applications
6.12.2.1            LED lighting
6.12.2.2            Horticultural lighting
6.12.3  Market challenges
6.12.4  Global market revenues
6.12.5  Companies
6.13     BIOTECH AND MEDICINE
6.13.1  Market drivers and trends
6.13.2  Applications
6.13.2.1            Fluorescent labelling
6.13.2.2            Drug delivery
6.13.2.3            Biosensing
6.13.2.4            Photodynamic therapy
6.13.2.5            DNA analysis
6.13.2.6            Immunoassays
6.13.3  Market challenges
6.13.4  Companies
6.13.5  Global market revenues
6.14     PHOTONICS AND PHOTODETECTORS
6.14.1  Market drivers and trends
6.14.2  Applications
6.14.2.1            SWIR Sensing
6.14.2.2            Quantum Dot short-wave infrared (SWIR) Sensing in AI and Machine vision
6.14.2.3            Quantum dot photonic integrated circuits (PICs)
6.14.2.4            QD CMOS Image Sensors
6.14.2.4.1        Main types of commercial quantum dot sensor arrays
6.14.2.5            QD-on-Si SWIR Detection
6.14.2.6            QD-Si hybrid image sensors
6.14.2.7            UV Imaging
6.14.2.7.1        Perovskite QDs
6.14.2.7.2        QD-on-CMOS
6.14.3  Companies
6.14.4  Global market revenues
6.15     SECURITY AND ANTI-COUNTERFEITING
6.15.1  Market drivers and trends
6.15.2  Applications
6.15.3  Companies
6.15.4  Global market revenues
6.16     QUANTUM COMPUTING
6.16.1  Overview
6.16.2  Companies
6.17     OTHER MARKETS
6.17.1  AgriTech
6.17.1.1            Applications
6.17.2  Batteries
6.17.2.1            Properties
6.17.2.2            Applications
6.17.2.2.1        Lithium-Ion Batteries (LIBs)
6.17.2.2.2        Solid-state batteries
6.17.2.2.3        Supercapacitors
6.17.3  Thermoelectrics
6.17.3.1            Properties
6.17.3.2            Applications
6.17.4  Lasers
6.17.4.1            Description
6.17.4.2            Applications
6.17.5  Photocatalysts
6.17.5.1            Properties
6.17.5.2            Applications
6.17.6  Photoelectrochemical sensors
6.17.6.1            Properties
6.17.6.2            Applications
6.17.7  Sunscreen
6.17.8  Hydrogen production
6.17.9  Autonomous vehicle sensors

7          QUANTUM DOT PRODUCER AND PRODUCT DEVELOPER PROFILES  (121 company profiles)8          QUANTUM DOTS COMPANIES NO LONGER TRADING
9          RESEARCH SCOPE AND METHODOLOGY
9.1       Report scope
9.2       Market definition
9.3       Research methodology
9.3.1    Primary research
9.3.2    Secondary research

10        REFERENCES
LIST OF TABLES
Table 1. Quantum dot display products.
Table 2. Quantum dot advantages in displays.
Table 3. Main markets for QDs in terms of volume.
Table 4. Market drivers and trends for quantum dots.
Table 5. Market challenges for quantum dots.
Table 6. Chemical synthesis of quantum dots.
Table 7. Quantum dot material options.
Table 8. Comparison of types of quantum dots.
Table 9. Applications of carbon quantum dots.
Table 10. Comparison between carbon quantum dots and graphene quantum dots.
Table 11. Comparison of graphene QDs and semiconductor QDs.
Table 12. Comparison of quantum dots synthesis methods.
Table 13. Markets and applications for graphene quanutm dots.
Table 14. Graphene quantum dots producers.
Table 15. Perovskite quantum dots (PQDs) overview.
Table 16. Comparative properties of conventional QDs and Perovskite QDs.
Table 17. Applications of perovskite QDs.
Table 18. Development roadmap for perovskite QDs.
Table 19. Properties of perovskite QLEDs comparative to OLED and QLED.
Table 20. Perovskite-based QD producers.
Table 21.  Overview of quantum rods.
Table 22. Applications of quantum rods.
Table 23. Global quantum dot regulations.
Table 24: Markets, benefits and applications of quantum dots.
Table 25. Quantum dots market structure.
Table 26. Production capacities of quantum dot producers.
Table 27. Market drivers and trends for quantum dots in LCD TVs and Displays.
Table 28. Market supply chain for quantum dots in displays.
Table 29. Advantages and disadvantages of LCDs, OLEDs and QDs.
Table 30. Phosphor materials.
Table 31. QDs vs. Phosphors.
Table 32: Typical approaches for integrating QDs into displays.
Table 33.QD-based display types
Table 34. QDEF fabrication processes.
Table 35. QD-OLED structure comparison.
Table 36. Conventional display vs. QD-OLED display
Table 37. Samsung QD-OLED display.
Table 38. Comparison between miniLED displays and other display types.
Table 39. Advantages and disadvantages of MiniLEDs.
Table 40. Comparison of AM and PM driving.
Table 41. MiniLED backlight costs.
Table 42. Comparison to conventional LEDs.
Table 43. Types of microLED.
Table 44. Comparison to LCD and OLED.
Table 45. Schematic comparison to LCD and OLED.
Table 46. Commercially available microLED products and specifications.
Table 47. microLED-based display advantages and disadvantages.
Table 48. Mass transfer methods, by company.
Table 49. Comparison of various mass transfer technologies.
Table 50: QD-TV unit sales 2016-2035 (Million Units).
Table 51. QD-TV revenues 2016-2035 (Million USD).
Table 52.  QD Monitor Unit sales 2016-2035 (million units).
Table 53.  QD Monitor revenues 2016-2035 (million USD).
Table 54. Overview of quantum dots in photovoltaics.
Table 55. Market drivers and trends in quantum dots in photovoltaics.
Table 56: Advantages of quantum dots in photovoltaics.
Table 57. Schottky QD Junction solar cells.
Table 58. Comparison of third generation solar cells.
Table 59. Quantum dots product and application developers in photovoltaics.
Table 60. Quantum dot photovoltaic market revenues 2016-2035 (Millions USD).
Table 61. Market drivers and trends for quantum dots in LED lighting.
Table 62. QD-LEDs and External quantum efficiencies (EQE).
Table 63. Market challenges for LED lighting.
Table 64. Quantum dot LED lighting market revenues 2016-2035 (Millions USD).
Table 65. Quantum dots product and application developers in lighting.
Table 66: Market drivers and trends for quantum dots in biotechnology and medicine.
Table 67. Market challenges for quantum dots in biotech and medicine.
Table 68.  Quantum dots product and application developers in biotechnology and medicine.
Table 69. Quantum dot biotechnology and medicine market revenues 2016-2035 (Millions USD).
Table 70.  Common material choices for infrared (IR) sensors.
Table 71. Market drivers and trends for quantum dots in photonics and photodetectors.
Table 72. Technology comparison with various image sensor technologies.
Table 73. Applications for QD-on-CMOS image sensors.
Table 74: Quantum dots product and application developers in photonics and photodetectors.
Table 75. Quantum dot photonics and photodetectors market revenues 2016-2035 (Millions USD).
Table 76: Market drivers and trends for quantum dots in security and anti-counterfeiting.
Table 77. Comparison of quantum dots compared to other security technologies.
Table 78. Quantum dots product and application developers in security & anti-counterfeiting.
Table 79. Quantum dot anti-counterfeiting and security market revenues 2016-2035 (Millions USD).
Table 80. Quantum dots product and application developers in quantum computing.
Table 81. Applications of quantum dots in agritech.
Table 82. Applications of quantum dots in batteries and supercapacitors.
Table 83. Applications of quantum dots in thermoelectrics.
Table 84. Applications of quantum dot lasers.
Table 85. Applications of quantum dots in photoelectrochemical sensors.
Table 86. Samsung QD-TV product list.
Table 87. Quantum Dots companies no longer trading.

LIST OF FIGURES
Figure 1: QLED TV from Samsung.
Figure 2. QD display products.
Figure 3. Perovskite quantum dots under UV light.
Figure 4. Quantum dot schematic.
Figure 5. Quantum dot size and colour.
Figure 6. (a) Emission color and wavelength of QDs corresponding to their sizes (b) InP QDs; (c) InP/ZnSe/ZnS core-shell QDs.
Figure 7. Carbon dots development.
Figure 8. Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair
Figure 9: Green-fluorescing graphene quantum dots.
Figure 10: Graphene quantum dots.
Figure 11. A pQLED device structure.
Figure 12. Perovskite quantum dots under UV light.
Figure 13. Precisely structured arrays of quantum rods.
Figure 14. Schematic of typical commercialization route for quantum dots producer.
Figure 15. Global Quantum dot revenues by end use market, 2016-2035 (millions USD).
Figure 16. Quantum dot revenues by region, 2015-2035 (millions USD).
Figure 17. QD technology development roadmap for displays.
Figure 18. QD-TVsupply chain.
Figure 19.. Toray organic colour conversion film
Figure 20: Quantum dot LED backlighting schematic.
Figure 21. Electroluminescent quantum dots schematic.
Figure 22. Working mechanism of QLED.
Figure 23. Schematic of LCD with MicroLED backlight.
Figure 24. Schematic for configuration of full colour microLED display
Figure 25. MSI curved quantum dot Mini-LED display.
Figure 26. Nanolumi Chameleon® G Film in LED/LCD Monitor.
Figure 27. Eyesafe QD.
Figure 28. MicroLED schematic.
Figure 29. Pixels per inch roadmap of µ-LED displays from 2007 to 2019.
Figure 30. Comparison of microLED with other display technologies.
Figure 31. Lextar 10.6 inch transparent microLED display.
Figure 32. Transition to borderless design.
Figure 33. Schematics of a elastomer stamping, b electrostatic/electromagnetic transfer, c laser-assisted transfer and d fluid self-assembly.
Figure 34. Schematics of Roll-based mass transfer.
Figure 35. Schematic of laser-induced forward transfer technology.
Figure 36. Schematic of fluid self-assembly technology.
Figure 37. Schematic of colour conversion technology.
Figure 38. Process flow of a full-colour microdisplay.
Figure 39:  Carbon nanotubes flexible, rechargeable yarn batteries incorporated into flexible, rechargeable yarn batteries.
Figure 40. Flexible & stretchable LEDs based on quantum dots.
Figure 41. QD-TV unit sales 2016-2035 (Million Units).
Figure 42. QD-TV revenues 2016-2035 (Million USD).
Figure 43: QD Monitor Unit sales 2016-2035 (million units).
Figure 44. QD Monitor revenues 2016-2035 (million USD).
Figure 45. (a) Schematic of Schottky barrier quantum dots based solar cell.
Figure 46.  Schematic of QD Solar Cell.
Figure 47. QD coated solar windows.
Figure 48. QDSSC Module.
Figure 49. Quantum dot photovoltaic market revenues 2016-2035 (Millions USD).
Figure 50: Fourth generation QD-LEDs.
Figure 51. Quantum dot LED lighting market revenues 2016-2035 (Millions USD).
Figure 52. Quantum dot biotechnology and medicine market revenues 2016-2035 (Millions USD).
Figure 53. Quantum dot photodetectors market market revenues 2016-2035 (Millions USD).
Figure 54. Quantum dot anti-counterfeiting and security market revenues 2016-2035 (Millions USD).
Figure 55: StoreDot battery charger.
Figure 56: Schematic of QD laser device.
Figure 57. AU 85" bezel-less quantum dot TV.
Figure 58. Dotz Nano GQD products.
Figure 59. Emberion VS20 quantum dot VIS-SWIR image sensor camera.
Figure 60. InP/ZnS, perovskite quantum dots and silicon resin composite under UV illumination.
Figure 61. Quantum dots tag on plastic bottle.
Figure 62. QDSSC Module.
Figure 63: Quantum dot sheet.
Figure 64. Quantag GQDs and sensor.
Figure 65. SQ dots production process.
Figure 66. Storedot batteries for EVs.
Figure 67. Infrared QD sensor company.
Figure 68. CQD™ photodiode schematic
Figure 69. TCL QLED TVs.
Figure 70. Schematic of UbiQD's PV windows.

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • Aeluma
  • Applied Quantum Materials
  • Attonuclei
  • AUO Optronics
  • Avantama AG
  • Biographene
  • Bio Square
  • BOE Technology Group
  • BrightComSo
  • Canon
  • Carbon Upcycling Technologies
  • Chang Chun Tuo Cai Technology
  • China Beijing Beida Jubang Science & Technology
  • China Star (CSoT)
  • The Coretec Group
  • Core Quantum Technologies
  • Creative Diagnostics
  • CrystalPlex Corporation
  • Cytodiagnostics
  • DuPont
  • Dai Nippon Toryo
  • Diraq, Dotz Nano
  • Efun Technology
  • Emberion
  • Emfutur Technologies
  • ENano Tec
  • Equal1 Laboratories
  • Ergis Group
  • GoLeafe
  • Graphene Square
  • Green Science Alliance
  • Hansol Chemical
  • Helio Display Materials
  • HP Inc.
  • HiSense
  • IQDEMY Quantum Technology
  • Innolux Corporation
  • Innoqd
  • Intematix Corporation
  • Kateeva
  • KRI
  • Merck KGaA
  • LG Display
  • LMS
  • Lumileds
  • Luminit
  • ML System
  • Najing Technology
  • Nanoco Group
  • Nano-Lit Technologies
  • Nanolumi
  • Nanooptical Materials
  • Nanosquare
  • Nanosys
  • Nanoxo
  • Nexdot
  • Nippon Chemical Industrial
  • NN-Labs
  • NS Materials
  • Ocean Nanotech
  • Ossila
  • Osram Opto Semiconductors
  • Particle Works
  • Perotech
  • PhosphorTech

Methodology

Loading
LOADING...