Recent Advances in iPSC Disease Modeling, Volume One addresses how induced pluripotent stem cells can be used to model various diseases. This new volume teaches readers about current advances in the field, describing the use of induced pluripotent stem cells to model several diseases in vitro, and thus enabling us to study the cellular and molecular mechanisms involved in different pathologies. Further insights into these mechanisms will have important implications for our understanding of disease appearance, development and progression. The volume is written for researchers and scientists in stem cell therapy, cell biology, regenerative medicine and organ transplantation specialists.
In recent years, remarkable progress has been made in the obtention of induced pluripotent stem cells and their differentiation into several cell types, tissues and organs using state-of-art techniques. Hence, these advantages have facilitated the identification of key targets and further defining on the molecular basis of several disorders.
Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.
Table of Contents
1. iPSCs for Modeling Lysosomal Storage Diseases 2. Sickle Cell Anemia: HBB Haplotypes; Clinical Heterogeneity; iPSC Modelling 3. iPSCs for Modeling mtDNA Diseases 4. iPSCs for Modeling Diamond Blackfan Anemia 5. Modeling Severe Congenital Neutropenia in Induced Pluripotent Stem Cells 6. iPSCs for Modeling Duchenne Muscular Dystrophy 7. Induced Pluripotent Stem Cell Modelling of Genetic Small Vessel Disease 8. The Contribution of Human Pluripotent Stem Cells to the Study of Myotonic Dystrophy Type 1 9. Induced Pluripotent Stem Cells (iPSCs) for Modeling of Bernard-Soulier Syndrome 10. iPSCs for Modelling Familial Hypercholesterolemia Type II A 11. iPSCs for Modeling Elastin-Associated Vasculopathy 12. iPSCs for Modeling of Sarcomeric Cardiomyopathies 13. Werner Syndrome iPS Cell,�A Study of Pathologic Aging
Authors
Alexander Birbrair Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, BrazilDepartment of Radiology, Columbia University Medical Center, Medical Center, USA. Dr. Alexander Birbrair received his bachelor's biomedical degree from Santa Cruz State University in Brazil. He completed his PhD in Neuroscience, in the field of stem cell biology, at the Wake Forest School of Medicine under the mentorship of Osvaldo Delbono. Then, he joined as a postdoc in stem cell biology at Paul Frenette's laboratory at Albert Einstein School of Medicine in New York. In 2016, he was appointed faculty at Federal University of Minas Gerais in Brazil, where he started his own lab. His laboratory is interested in understanding how the cellular components of different tissues function and control disease progression. His group explores the roles of specific cell populations in the tissue microenvironment by using state-of-the-art techniques. His research is funded by the Serrapilheira Institute, CNPq, CAPES, and FAPEMIG. In 2018, Alexander was elected affiliate member of the Brazilian Academy of Sciences (ABC), and, in 2019, he was elected member of the Global Young Academy (GYA), and in 2021, he was elected affiliate member of The World Academy of Sciences (TWAS). He is the Founding Editor and Editor-in-Chief of Current Tissue Microenvironment Reports, and Associate Editor of Molecular Biotechnology. Alexander also serves in the editorial board of several other international journals: Stem Cell Reviews and Reports, Stem Cell Research, Stem Cells and Development, and Histology and Histopathology.