Bionanomaterials are molecular materials composed partially or completely of biological molecules, key biological structures, such as proteins, enzymes, viruses, DNA, biopolymers as well as metal, metal oxides, and carbon nanomaterials with characteristic bioactivity. Bionanomaterials have drawn much attention for their use in a wide range of industrial applications from scaffolds, dental implants, drug delivery, dialysis, biobatteries, biofuel cells, air purification, and water treatment. Therefore, the intensive current research in this area is driven towards the designing and functionalization of bionanomaterials for industrial applications.
Fundamentals of Bionanomaterials covers the fundamental aspects, experimental setup, synthesis, properties, and characterization of the different types of bionanomaterial. It discusses the different structure and unique properties of bionanomaterials that can be obtained by modifying their morphology and composition, highlighting a wide range of fabrication techniques of bionanomaterials and critical processing parameters.
This is an important reference source for all those seeking to gain a solid understanding of the characterization, properties and processing a variety of bionanomaterial classes.
Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.
Table of Contents
Part I: Fundamentals of Bionanomaterials 1. Introduction to�bionanotechnology�and bionanomaterials 2. Types and classifications of bionanomaterials 3. Roles of bionanomaterials in nature: plants, animals, human 4.�Chemical structure and of bionanomaterials 5. Self-assembly of bionanomaterials
Part II: Experimental setup and synthesis techniques 6. Physical techniques for synthesis of bionanomaterials 7. Chemical techniques for synthesis of bionanomaterials 8. Biological techniques for synthesis of bionanomaterials 9. Extraction of bionanomaterials from natural sources 10. Synthesis of polymer-based bionanomaterials 11. Synthesis of ceramic-based bionanomaterials 12. Synthesis of metal-based bionanomaterials 13. Synthesis of metal oxide-based bionanomaterials 14. Synthesis of carbon-based bionanomaterials 15. Synthesis of bionanomaterials from waste materials
Part III: Surface functionalization and processing techniques 16. Gas phase modification of bionanomaterials 17. Liquid phase modification of bionanomaterials 18. Surface grafting towards high-performance bionanomaterials 19. DNA nanoengineering 20. Surface functionalization of bionanomaterials for textile applications 21. Surface functionalization of nano-bioglass
Part IV: Unique properties and characterization of nanocelluloses 22. Toxicity of nanomaterials 23. Antibacterial properties of nanomaterials 24. Biocompatibility of bionanomaterials 25. Antimicrobial properties of nanomaterials 26. Characterization of bionanomaterials 27. Challenges and future aspects for commercialization of bionanomaterials