Autonomous Robot-Aided Optical Manipulation for Biological Cells gives a systematically and almost self-contained description of the many facets of modeling, sensing, and control techniques or experimentally exploring emerging trends in optical manipulation of biological cell in micro/nanorobotics systems.
To achieve biomedical applications, reliability design, modeling, and precision control are vitally important for the development of engineering systems. With the advances in modeling, sensing, and control techniques, it is opportunistic to exploit them for the benefit of reliability design, actuation, and precision control of micro/nanomanipulation systems to expanding the applications of robot at the micro and nano scales, especially in biomedical engineering.
This book presents new techniques in reliability modeling and advanced control of robot-aided optical manipulation of biological cells systems. The book will be beneficial to the researchers within robotics, mechatronics, biomedical engineering, and automatic control society, including both academic and industrial parts.
Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.
Table of Contents
Section A: Principle of optical manipulation of biological cells1. Principle of Optical Tweezers Trapping2. Principle of Holographic Optical Tweezers coherence of the edited book volume3. Modeling of robot-tweezers manipulation of biological cells
Section B: Autonomous Frameworks for Cell Position Control4. Direct optical manipulation of biological cells5. Indirect optical manipulation of biological cells6. Advanced intelligent control techniques for cell position control7. Advances cell orientation control8. Integrated optical tweezers with other manipulation platforms
Section C: Case studies9. Cell sorting, arraying, pairing and patterning using cell positioning techniques10. Cell fusion using cell positioning techniques11. Cell injection using combined cell positioning and reorientation techniques12. Cell biopsy using combined cell positioning and reorientation techniques13. Current challenges and future research directions of optical manipulation of biological cells
Authors
Mingyang Xie Nanjing University of Aeronautics and Astronautics, College of Automation Engineering, China. Mingyang Xie.?Nanjing University of Aeronautics and Astronautics, College of Automation Engineering.?Prof. Xie is one of the outstanding scholars in the field of micro/nanorobot and micro/nanomanipulation. He has been the pioneer in establishing autonomous frameworks to realize optical manipulation of cell position and orientation in 3D. Moreover, he is the pioneer in modeling and control of multiple degrees of freedom of cell rotational control both from the theoretical and experimental perspectives, and he is also the pioneer to develop an autonomous system to achieve controlled organelle extraction. Therefore, his work has recently brought a substantial impact on the field.?
As recognition for his significant contributions and success to both teaching and research, Prof. Xie has received several research awards, including IJCAS academic contribution award, innovative entrepreneurial talent issued by the Government of Jiangsu Province, China, editorial services for many high-quality journals. Prof. Xie has been funded as principal investigator in several projects in the areas of modeling and control of micro/nanomanipulation, cell transportation and orientation control, and cell-based engineering.?
Prof. Xie is currently the Associate Editor of the International Journal of Aerospace System Science and Engineering, Guest Editor of the International Journal of Advanced Manufacturing Technology. He is currently served as a reviewer of many top journals and conferences. He is the Senior member of IEEE.