+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

The Global Market for Bioplastics and Natural Fibers 2023-2033

  • PDF Icon

    Report

  • 634 Pages
  • September 2022
  • Region: Global
  • Future Markets, Inc
  • ID: 5238757

Government legislation, consumer trends and environmental concerns are compelling the development of bioplastics and natural fibers in markets including food packaging, automotive, building/construction, textiles, agriculture, sports & leisure and consumer goods. Biocomposites based on these materials offer significant advantages over incumbent synthetic materials including lightweighting, sustainability and reduced carbon footprint. Natural fibers are also abundant and low-cost. The bioplastics and natural fibers market will witness good growth through to 2033, with excellent opportunities for large producers and start-ups. 

The report provides an in depth analysis of the bioplastics and natural fibers market by applications and bioplastic and natural fiber type. Report contents include: 

  • Market trends and drivers in the bioplastics and natural fibers market.
  • Production estimates by bioplastics and natural fibers producers, types, market and regions.
  • Challenges for the bioplastics and natural fibers market.
  • Advantages and disadvantages of the bioplastics and natural fibers over synthetic plastics. 
  • Analysis of synthetic biopolymers market including Polylactic acid (Bio-PLA), Polyethylene terephthalate (Bio-PET), Polytrimethylene terephthalate (Bio-PTT), Polyethylene furanoate (Bio-PEF), Polyamides (Bio-PA), Poly(butylene adipate-co-terephthalate) (Bio-PBAT), Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including Polyhydroxyalkanoates (PHA), Polysaccharides, Microfibrillated cellulose (MFC), Cellulose nanocrystals, Cellulose nanofibers,  Protein-based bioplastics, Algal and fungal. 
  • Analysis of natural fibers including seed fibers (cotton, luffa), bast fibers (jute, hemp, flax, ramie, kenaf), leaf fibers (sisal, abaca). fruit fibers (banana, pineapple, coir), stalk fibers, bamboo, sugarcane, animal proteins, plus alternative wool, leather, silk and down.
  • Profiles of over 500 companies. Companies profiled include Ananas Anam, BASF, Bast Fiber Technologies Inc., Kelheim Fibres GmbH, BComp, Circular Systems, Evrnu, Natural Fiber Welding, Icytos, NatureWorks, Total Corbion, Danimer Scientific, Novamont, Mitsubishi Chemicals, Indorama, Braskem, Avantium, Borealis, Cathay, Dupont, BASF, Arkema, DuPont, AMSilk GmbH, Notpla, Loliware, Bolt Threads, Ecovative, Kraig Biocraft Laboratories, Spiber and many more. 

This product will be delivered within 1-3 business days.

Table of Contents

1 EXECUTIVE SUMMARY
1.1 BIOPLASTICS
1.1.1 Market trends
1.1.2 Global production to 2033
1.1.3 Main producers and global production capacities
1.1.3.1 Producers
1.1.3.2 By biobased and sustainable plastic type
1.1.3.3 By region
1.1.4 Global demand for biobased and sustainable plastics 2020-21, by market
1.1.5 Challenges for bioplastics in packaging
1.2 NATURAL FIBERS
1.2.1 What are next-gen natural fibers?
1.2.2 Benefits of natural fibers over synthetic
1.2.3 Markets and applications for next-gen natural fibers
1.2.4 Recent commercial activity in next-gen natural fibers
1.2.5 Commercially available next-gen natural fiber products
1.2.6 Market drivers for next-gen natural fibers
1.2.7 Challenges

2 RESEARCH METHODOLOGY
3 THE GLOBAL PLASTICS MARKET
3.1 Global production of plastics
3.2 The importance of plastic
3.3 Issues with plastics use
3.4 Policy and regulations
3.5 The circular economy
3.6 Conventional polymer materials used in packaging
3.6.1 Polyolefins: Polypropylene and polyethylene
3.6.2 PET and other polyester polymers
3.6.3 Renewable and bio-based polymers for packaging
3.7 Comparison of synthetic fossil-based and bio-based polymers
3.8 End-of-life treatment of bioplastics

4 THE GLOBAL BIOPLASTICS MARKET
4.1 Bio-based or renewable plastics
4.1.1 Drop-in bio-based plastics
4.1.2 Novel bio-based plastics
4.2 Biodegradable and compostable plastics
4.2.1 Biodegradability
4.2.2 Compostability
4.3 Advantages and disadvantages
4.4 Types of Bio-based and/or Biodegradable Plastics
4.5 Market leaders by biobased and/or biodegradable plastic types
4.6 SYNTHETIC BIO-BASED POLYMERS
4.6.1 Polylactic acid (Bio-PLA)
4.6.1.1 Market analysis
4.6.1.2 Producers and production capacities, current and planned
4.6.1.2.1 Lactic acid producers and production capacities
4.6.1.2.2 PLA producers and production capacities
4.6.2 Polyethylene terephthalate (Bio-PET)
4.6.2.1 Market analysis
4.6.2.2 Producers and production capacities
4.6.3 Polytrimethylene terephthalate (Bio-PTT)
4.6.3.1 Market analysis
4.6.3.2 Producers and production capacities
4.6.4 Polyethylene furanoate (Bio-PEF)
4.6.4.1 Market analysis
4.6.4.2 Comparative properties to PET
4.6.4.3 Producers and production capacities
4.6.4.3.1 FDCA and PEF producers and production capacities
4.6.5 Polyamides (Bio-PA)
4.6.5.1 Market analysis
4.6.5.2 Producers and production capacities
4.6.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters
4.6.6.1 Market analysis
4.6.6.2 Producers and production capacities
4.6.7 Polybutylene succinate (PBS) and copolymers
4.6.7.1 Market analysis
4.6.7.2 Producers and production capacities
4.6.8 Polyethylene (Bio-PE)
4.6.8.1 Market analysis
4.6.8.2 Producers and production capacities
4.6.9 Polypropylene (Bio-PP)
4.6.9.1 Market analysis
4.6.9.2 Producers and production capacities
4.7 NATURAL BIO-BASED POLYMERS
4.7.1 Polyhydroxyalkanoates (PHA)
4.7.1.1 Technology description
4.7.1.2 Types
4.7.1.2.1 PHB
4.7.1.2.2 PHBV
4.7.1.3 Synthesis and production processes
4.7.1.4 Market analysis
4.7.1.5 Commercially available PHAs
4.7.1.6 Producers and production capacities
4.7.1.7 PHAs in packaging
4.7.2 Polysaccharides
4.7.2.1 Microfibrillated cellulose (MFC)
4.7.2.1.1 Market analysis
4.7.2.1.2 Producers and production capacities
4.7.2.2 Nanocellulose
4.7.2.2.1 Cellulose nanocrystals
4.7.2.2.1.1 Market analysis
4.7.2.2.1.2 Producers and production capacities
4.7.2.2.2 Cellulose nanofibers
4.7.2.2.2.1 Market analysis
4.7.2.2.2.2 Producers and production capacities
4.7.2.3 Starch
4.7.2.3.1 Production
4.7.2.3.1.1 Thermoplastic starch (TPS)
4.7.2.3.1.2 Producers
4.7.3 Protein-based bioplastics
4.7.3.1 Types, applications and producers
4.8 Mycelium
4.8.1 Properties
4.8.2 Applications
4.8.3 Producers
4.9 Chitosan
4.9.1 Properties
4.10 Alginate
4.10.1 Advantages
4.10.2 Production
4.10.3 Producers

5 THE GLOBAL BIOPLASTICS MARKET
5.1 Global production capacities for bioplastics by end user market 2019-2033
5.2 Processes for bioplastics in packaging
5.3 Flexible packaging
5.3.1 Production volumes 2019-2033
5.4 Rigid packaging
5.4.1 Production volumes 2019-2033
5.4.1.1 By end-use application
5.5 Consumer products
5.6 Automotive
5.7 Building & construction
5.8 Textiles
5.9 Electronics
5.10 Agriculture and horticulture

6 THE NATURAL FIBERS MARKET
6.1 Manufacturing method, matrix materials and applications of natural fibers
6.2 Advantages of natural fibers
6.3 Plants (cellulose, lignocellulose)
6.3.1 Seed fibers
6.3.1.1 Cotton
6.3.1.1.1 Production volumes 2018-2033
6.3.1.2 Kapok
6.3.1.2.1 Production volumes 2018-2033
6.3.1.3 Luffa
6.3.2 Bast fibers
6.3.2.1 Jute
6.3.2.1.1 Production volumes 2018-2033
6.3.2.2 Hemp
6.3.2.2.1 Production volumes 2018-2033
6.3.2.3 Flax
6.3.2.3.1 Production volumes 2018-2033
6.3.2.4 Ramie
6.3.2.4.1 Production volumes 2018-2033
6.3.2.5 Kenaf
6.3.2.5.1 Production volumes 2018-2033
6.3.3 Leaf fibers
6.3.3.1 Sisal
6.3.3.1.1 Production volumes 2018-2033
6.3.3.2 Abaca
6.3.3.2.1 Production volumes 2018-2033
6.3.4 Fruit fibers
6.3.4.1 Coir
6.3.4.1.1 Production volumes 2018-2033
6.3.4.2 Banana
6.3.4.2.1 Production volumes 2018-2033
6.3.4.3 Pineapple
6.3.5 Stalk fibers from agricultural residues
6.3.5.1 Rice fiber
6.3.5.2 Corn
6.3.6 Cane, grasses and reed
6.3.6.1 Switch grass
6.3.6.2 Sugarcane (agricultural residues)
6.3.6.3 Bamboo
6.3.6.3.1 Production volumes 2018-2033
6.3.6.4 Fresh grass (green biorefinery)
6.4 Animal (fibrous protein)
6.4.1 Wool
6.4.1.1 Producers
6.4.2 Silk fiber
6.4.2.1 Producers
6.4.3 Leather
6.4.3.1 Producers
6.4.4 Fur
6.4.4.1 Producers
6.4.5 Down
6.4.5.1 Producers
6.5 MARKETS FOR NEXT-GEN NATURAL FIBERS
6.5.1 Composites
6.5.1.1 Applications
6.5.1.2 Natural fiber injection moulding compounds
6.5.1.2.1 Properties
6.5.1.2.2 Applications
6.5.1.3 Non-woven natural fiber mat composites
6.5.1.3.1 Automotive
6.5.1.3.2 Applications
6.5.1.4 Aligned natural fiber-reinforced composites
6.5.1.5 Natural fiber biobased polymer compounds
6.5.1.6 Natural fiber biobased polymer non-woven mats
6.5.1.6.1 Flax
6.5.1.6.2 Kenaf
6.5.1.7 Natural fiber thermoset bioresin composites
6.5.2 Aerospace
6.5.2.1 Market overview
6.5.3 Automotive
6.5.3.1 Market overview
6.5.3.2 Applications of natural fibers
6.5.4 Building/construction
6.5.4.1 Market overview
6.5.4.2 Applications of natural fibers
6.5.5 Sports and leisure
6.5.5.1 Market overview
6.5.6 Textiles
6.5.6.1 Market overview
6.5.6.2 Consumer apparel
6.5.6.3 Geotextiles
6.5.7 Packaging
6.5.7.1 Market overview
6.6 GLOBAL NATURAL FIBERS MARKET
6.6.1 Overall global fibers market
6.6.2 Plant-based fiber production
6.6.3 Animal-based natural fiber production

7 BIOPLASTICS COMPANY PROFILES (324 company profiles)8 NATURAL FIBER PRODUCERS AND PRODUCT DEVELOPER PROFILES (178 company profiles)9 REFERENCES
List of Tables
Table 1. Market trends in biobased and sustainable plastics
Table 2. Global production capacities of biobased and sustainable plastics 2018-2033, in 1,000 tons
Table 3. Global production capacities, by producers
Table 4. Global production capacities of biobased and sustainable plastics 2019-2033, by type, in 1,000 tons
Table 5. Challenges for bioplastics in packaging
Table 6. Types of next-gen natural fibers
Table 7. Markets and applications for natural fibers
Table 8. Recent commercial activity in next-gen natural fibers
Table 9. Commercially available next-gen natural fiber products
Table 10. Market drivers for natural fibers
Table 11. Issues related to the use of plastics
Table 12. Types of bio-based plastics and fossil-fuel-based plastics
Table 13. Comparison of synthetic fossil-based and bio-based polymers
Table 14. Type of biodegradation
Table 15. Advantages and disadvantages of biobased plastics compared to conventional plastics
Table 16. Types of Bio-based and/or Biodegradable Plastics, applications
Table 17. Market leader by Bio-based and/or Biodegradable Plastic types
Table 18. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications
Table 19. Lactic acid producers and production capacities
Table 20. PLA producers and production capacities
Table 21. Planned PLA capacity expansions in China
Table 22. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications
Table 23. Bio-based Polyethylene terephthalate (PET) producers and production capacities,
Table 24. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications
Table 25. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers
Table 26. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications
Table 27. PEF vs. PET
Table 28. FDCA and PEF producers
Table 29. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications
Table 30. Leading Bio-PA producers production capacities
Table 31. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications
Table 32. Leading PBAT producers, production capacities and brands
Table 33. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications
Table 34. Leading PBS producers and production capacities
Table 35. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications
Table 36. Leading Bio-PE producers
Table 37. Bio-PP market analysis- manufacture, advantages, disadvantages and applications
Table 38. Leading Bio-PP producers and capacities
Table 39.Types of PHAs and properties
Table 40. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers
Table 41. Polyhydroxyalkanoate (PHA) extraction methods
Table 42. Polyhydroxyalkanoates (PHA) market analysis
Table 43. Commercially available PHAs
Table 44. Polyhydroxyalkanoates (PHA) producers
Table 45. Markets and applications for PHAs
Table 46. Applications, advantages and disadvantages of PHAs in packaging
Table 47. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications
Table 48. Leading MFC producers and capacities
Table 49. Cellulose nanocrystals analysis
Table 50: Cellulose nanocrystal production capacities and production process, by producer
Table 51. Cellulose nanofibers market analysis
Table 52. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes
Table 53. Starch-based bioplastic producers
Table 54. Types of protein based-bioplastics, applications and companies
Table 55. Overview of mycelium fibers-description, properties, drawbacks and applications
Table 56. Companies developing mycelium-based bioplastics
Table 57. Overview of chitosan fibers-description, properties, drawbacks and applications
Table 58. Overview of alginate-description, properties, application and market size
Table 59. Companies developing algal-based bioplastics
Table 60. Global production capacities for bioplastics by end user market 2019-2033, 1,000 tons
Table 61. Processes for bioplastics in packaging
Table 62. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging
Table 63. Typical applications for bioplastics in flexible packaging
Table 64. Typical applications for bioplastics in rigid packaging
Table 65. Global bioplastics packaging by end-use application, 2023-2033 (‘000 tons)
Table 66. Application, manufacturing method, and matrix materials of natural fibers
Table 67. Typical properties of natural fibers
Table 68. Overview of cotton fibers-description, properties, drawbacks and applications
Table 69. Overview of kapok fibers-description, properties, drawbacks and applications
Table 70. Overview of luffa fibers-description, properties, drawbacks and applications
Table 71. Overview of jute fibers-description, properties, drawbacks and applications
Table 72. Overview of hemp fibers-description, properties, drawbacks and applications
Table 73. Overview of flax fibers-description, properties, drawbacks and applications
Table 74. Overview of ramie fibers-description, properties, drawbacks and applications
Table 75. Overview of kenaf fibers-description, properties, drawbacks and applications
Table 76. Overview of sisal fibers-description, properties, drawbacks and applications
Table 77. Overview of abaca fibers-description, properties, drawbacks and applications
Table 78. Overview of coir fibers-description, properties, drawbacks and applications
Table 79. Overview of banana fibers-description, properties, drawbacks and applications
Table 80. Overview of pineapple fibers-description, properties, drawbacks and applications
Table 81. Overview of rice fibers-description, properties, drawbacks and applications
Table 82. Overview of corn fibers-description, properties, drawbacks and applications
Table 83. Overview of switch grass fibers-description, properties and applications
Table 84. Overview of sugarcane fibers-description, properties, drawbacks and application and market size
Table 85. Overview of bamboo fibers-description, properties, drawbacks and applications
Table 86. Overview of wool fibers-description, properties, drawbacks and applications
Table 87. Next-gen wool producers
Table 88. Overview of silk fibers-description, properties, application and market size
Table 89. Next-gen silk producers
Table 90. Next-gen leather producers
Table 91. Next-gen fur producers
Table 92. Next-gen down producers
Table 93. Applications of natural fiber composites
Table 94. Typical properties of short natural fiber-thermoplastic composites
Table 95. Properties of non-woven natural fiber mat composites
Table 96. Properties of aligned natural fiber composites
Table 97. Properties of natural fiber-bio-based polymer compounds
Table 98. Properties of natural fiber-bio-based polymer non-woven mats
Table 99. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use
Table 100. Natural fiber-reinforced polymer composite in the automotive market
Table 101. Natural fibers in the automotive sector- market drivers, applications and challenges for NF use
Table 102. Applications of natural fibers in the automotive industry
Table 103. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use
Table 104. Applications of natural fibers in the building/construction sector
Table 105. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use
Table 106. Natural fibers in the textiles sector-market drivers, applications and challenges for NF use
Table 107. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use
Table 108. Granbio Nanocellulose Processes
Table 109. Oji Holdings CNF products
Table 110. Granbio Nanocellulose Processes
Table 111. Oji Holdings CNF products

List of Figures
Figure 1. Total global production capacities for biobased and sustainable plastics, all types, 000 tons
Figure 2. Global production capacities of bioplastics 2018-2033, in 1,000 tons by biodegradable/non-biodegradable types
Figure 3. Global production capacities of biobased and sustainable plastics in 2019-2033, by type, in 1,000 tons
Figure 4. Global production capacities of bioplastics in 2019-2033, by type
Figure 5. Global production capacities of biobased and sustainable plastics 2019-2033, by region, tonnes
Figure 6. Current and future applications of biobased and sustainable plastics
Figure 7. Global demand for biobased and sustainable plastics by end user market, 2021
Figure 8. Global production capacities for biobased and sustainable plastics by end user market 2019-2033, tons
Figure 9. Absolut natural based fiber bottle cap
Figure 10. Adidas algae-ink tees
Figure 11. Carlsberg natural fiber beer bottle
Figure 12. Miratex watch bands
Figure 13. Adidas Made with Nature Ultraboost 22
Figure 14. PUMA RE:SUEDE sneaker
Figure 15. Global plastics production 1950-2020, millions of tons
Figure 16. The circular plastic economy
Figure 17. Routes for synthesizing polymers from fossil-based and bio-based resources
Figure 18. Coca-Cola PlantBottle®
Figure 19. Interrelationship between conventional, bio-based and biodegradable plastics
Figure 20. Production capacities of Polyethylene furanoate (PEF) to 2025
Figure 21. PHA family
Figure 22. Typical structure of mycelium-based foam
Figure 23. Commercial mycelium composite construction materials
Figure 24. Frayme Mylo™?
Figure 25. BLOOM masterbatch from Algix
Figure 26. Global production capacities for bioplastics by end user market 2019-2033, 1,000 tons
Figure 27. PHA bioplastic packaging products
Figure 28. Bioplastics for flexible packaging by bioplastic material type, 2019-2033 (‘000 tons)
Figure 29. Bioplastics for rigid packaging by bioplastic material type, 2019-2033 (‘000 tons)
Figure 30. Global bioplastics packaging by end-use application, 2023-2033 (‘000 tons)
Figure 31. Global production capacities for biobased and sustainable plastics in consumer products 2019-2033, in 1,000 tons
Figure 32. Global production capacities for biobased and sustainable plastics in automotive 2019-2033, in 1,000 tons
Figure 33. Global production capacities for biobased and sustainable plastics in building and construction 2019-2033, in 1,000 tons
Figure 34. Global production capacities for biobased and sustainable plastics in textiles 2019-2033, in 1,000 tons
Figure 35. Global production capacities for biobased and sustainable plastics in electronics 2019-2033, in 1,000 tons
Figure 36. Biodegradable mulch films
Figure 37. Global production capacities for biobased and sustainable plastics in agriculture 2019-2033, in 1,000 tons
Figure 38. Types of natural fibers
Figure 39. Cotton production volume 2018-2033 (Million MT)
Figure 40. Kapok production volume 2018-2033 (MT)
Figure 41. Luffa cylindrica fiber
Figure 42. Jute production volume 2018-2033 (Million MT)
Figure 43. Hemp fiber production volume 2018-2033 ( MT)
Figure 44. Flax fiber production volume 2018-2033 (MT)
Figure 45. Ramie fiber production volume 2018-2033 (MT)
Figure 46. Kenaf fiber production volume 2018-2033 (MT)
Figure 47. Sisal fiber production volume 2018-2033 (MT)
Figure 48. Abaca fiber production volume 2018-2033 (MT)
Figure 49. Coir fiber production volume 2018-2033 (MILLION MT)
Figure 50. Banana fiber production volume 2018-2033 (MT)
Figure 51. Pineapple fiber
Figure 52. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019
Figure 53. Bamboo fiber production volume 2018-2033 (MILLION MT)
Figure 54. Conceptual landscape of next-gen leather materials
Figure 55. Hemp fibers combined with PP in car door panel
Figure 56. Car door produced from Hemp fiber
Figure 57. Natural fiber composites in the BMW M4 GT4 racing car
Figure 58. Mercedes-Benz components containing natural fibers
Figure 59. AlgiKicks sneaker, made with the Algiknit biopolymer gel
Figure 60. Coir mats for erosion control
Figure 61. Global fiber production in 2021, by fiber type, million MT and %
Figure 62. Global fiber production (million MT) to 2020-2033
Figure 63. Plant-based fiber production 2018-2033, by fiber type, MT
Figure 64. Animal based fiber production 2018-2033, by fiber type, million MT
Figure 65. Algiknit yarn
Figure 66. Bio-PA rear bumper stay
Figure 67. formicobio™ technology
Figure 68. nanoforest-S
Figure 69. nanoforest-PDP
Figure 70. nanoforest-MB
Figure 71. CuanSave film
Figure 72. ELLEX products
Figure 73. CNF-reinforced PP compounds
Figure 74. Kirekira! toilet wipes
Figure 75. Mushroom leather
Figure 76. Cellulose Nanofiber (CNF) composite with polyethylene (PE)
Figure 77. PHA production process
Figure 78. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials
Figure 79. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer)
Figure 80. CNF gel
Figure 81. Block nanocellulose material
Figure 82. CNF products developed by Hokuetsu
Figure 83. Lactips plastic pellets
Figure 84. Made of Air's HexChar panels
Figure 85. IPA synthesis method
Figure 86. MOGU-Wave panels
Figure 87. Reishi
Figure 88. Nippon Paper Industries’ adult diapers
Figure 89. Compostable water pod
Figure 90. CNF clear sheets
Figure 91. Oji Holdings CNF polycarbonate product
Figure 92. Manufacturing process for STARCEL
Figure 93. Lyocell process
Figure 94. Spider silk production
Figure 95. Sulapac cosmetics containers
Figure 96. Sulzer equipment for PLA polymerization processing
Figure 97. Teijin bioplastic film for door handles
Figure 98. Corbion FDCA production process
Figure 99. Visolis’ Hybrid Bio-Thermocatalytic Process
Figure 100. Pluumo
Figure 101. Algiknit yarn
Figure 102. Amadou leather shoes
Figure 103. Anpoly cellulose nanofiber hydrogel
Figure 104. MEDICELLU™
Figure 105. Asahi Kasei CNF fabric sheet
Figure 106. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric
Figure 107. CNF nonwoven fabric
Figure 108. Roof frame made of natural fiber
Figure 109.Tras Rei chair incorporating ampliTex fibers
Figure 110. Natural fibres racing seat
Figure 111. Porche Cayman GT4 Clubsport incorporating BComp flax fibers
Figure 112. Beyond Leather Materials product
Figure 113. Fiber-based screw cap
Figure 114. Cellugy materials
Figure 115. nanoforest-S
Figure 116. nanoforest-PDP
Figure 117. nanoforest-MB
Figure 118. CuanSave film
Figure 119. Celish
Figure 120. Trunk lid incorporating CNF
Figure 121. ELLEX products
Figure 122. CNF-reinforced PP compounds
Figure 123. Kirekira! toilet wipes
Figure 124. Color CNF
Figure 125. Rheocrysta spray
Figure 126. DKS CNF products
Figure 127. Mushroom leather
Figure 128. CNF based on citrus peel
Figure 129. Citrus cellulose nanofiber
Figure 130. Filler Bank CNC products
Figure 131. Fibers on kapok tree and after processing
Figure 132. Water-repellent cellulose
Figure 133. Cellulose Nanofiber (CNF) composite with polyethylene (PE)
Figure 134. CNF products from Furukawa Electric
Figure 135. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials
Figure 136. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer)
Figure 137. CNF gel
Figure 138. Block nanocellulose material
Figure 139. CNF products developed by Hokuetsu
Figure 140. Marine leather products
Figure 141. Inner Mettle Milk products
Figure 142. Dual Graft System
Figure 143. Engine cover utilizing Kao CNF composite resins
Figure 144. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended)
Figure 145. Kami Shoji CNF products
Figure 146. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side)
Figure 147. Nike Algae Ink graphic tee
Figure 148. BioFlex process
Figure 149. TransLeather
Figure 150. Chitin nanofiber product
Figure 151. Marusumi Paper cellulose nanofiber products
Figure 152. FibriMa cellulose nanofiber powder
Figure 153. Cellulomix production process
Figure 154. Nanobase versus conventional products
Figure 155. MOGU-Wave panels
Figure 156. CNF slurries
Figure 157. Range of CNF products
Figure 158. Reishi
Figure 159. Natural Fiber Welding, Inc. materials
Figure 160. Nippon Paper Industries’ adult diapers
Figure 161. Leather made from leaves
Figure 162. Nike shoe with beLEAF™
Figure 163. CNF clear sheets
Figure 164. Oji Holdings CNF polycarbonate product
Figure 165. Fabric consisting of 70 per cent wool and 30 per cent Qmilk
Figure 166. XCNF
Figure 167. LOVR hemp leather
Figure 168. CNF insulation flat plates
Figure 169. Manufacturing process for STARCEL
Figure 170. 3D printed cellulose shoe
Figure 171. Lyocell process
Figure 172. North Face Spiber Moon Parka
Figure 173. PANGAIA LAB NXT GEN Hoodie
Figure 174. Spider silk production
Figure 175. 2 wt.% CNF suspension
Figure 176. BiNFi-s Dry Powder
Figure 177. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet
Figure 178. Silk nanofiber (right) and cocoon of raw material
Figure 179. Sulapac cosmetics containers
Figure 180. Comparison of weight reduction effect using CNF
Figure 181. CNF resin products
Figure 182. Vegea production process
Figure 183. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test
Figure 184. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film
Figure 185. Worn Again products
Figure 186. Zelfo Technology GmbH CNF production process

Companies Mentioned (Partial List)

A selection of companies mentioned in this report includes, but is not limited to:

  • 3M
  • 9Fiber, Inc.
  • ADBioplastics
  • Adriano di Marti/Desserto
  • Advanced Biochemical (Thailand) Co., Ltd.
  • Aeropowder Limited
  • AGRANA Staerke GmbH
  • Ahlstrom-Munksjö Oyj
  • Algaeing
  • AlgiKnit
  • Algix LLC
  • Amadou Mushroom Leather
  • AMSilk GmbH
  • An Phát Bioplastics
  • Ananas Anam Ltd.
  • Anellotech, Inc.
  • Ankor Bioplastics Co., Ltd.
  • ANPOLY, Inc.
  • Anqing He Xing Chemical Co., Ltd.
  • Applied Bioplastics
  • Aquafil S.p.A.
  • Aquapak Polymers Ltd
  • Archer Daniel Midland Company (ADM)
  • Arctic Biomaterials Oy
  • Arekapak GmbH
  • Arkema S.A
  • Arlanxeo
  • Arrow Greentech
  • Arzeda Corp.
  • Asahi Kasei Chemicals Corporation
  • Attis Innovations, llc
  • AVA Biochem AG
  • Avani Eco
  • Avantium B.V.
  • Ayas Renewables Inc.
  • Azolla
  • Bambooder Biobased Fibers B.V.
  • BASF SE
  • Bast Fiber Technologies, Inc.
  • BBCA Biochemical & GALACTIC Lactic Acid Co., Ltd.
  • Bcomp ltd.
  • Betulium Oy
  • Beyond Leather Materials ApS
  • Bio Fab NZ
  • Bio2Materials Sp. z o.o.
  • Bioextrax AB
  • BIO-FED
  • Biofiber Tech Sweden AB
  • Biofibre GmbH
  • Biofine Technology, LLC
  • Bioform Technologies
  • Biokemik
  • Bioleather
  • BioLogiQ, Inc.
  • BIO-LUTIONS International AG
  • Biomass Resin Holdings Co., Ltd.
  • Biome Bioplastics
  • Biophilica
  • Bioplastech Ltd
  • Biopolix
  • BioSolutions
  • BIOTEC GmbH & Co. KG
  • Biotecam
  • Biotrem
  • Bioworks Corporation
  • BlockTexx Pty Ltd.
  • BluCon Biotech GmbH
  • Blue BioFuels, Inc.
  • Blue Ocean Closures
  • Bluepha Beijing Lanjing Microbiology Technology Co., Ltd.
  • Bolt Threads
  • Borealis AG
  • Borregaard Chemcell
  • Bosk Bioproducts Inc.
  • B-PREG
  • Braskem SA
  • Bucha Bio, INc.
  • CARAPAC Company
  • Carbiolice
  • Carbios
  • Carbonwave
  • Cardia Bioplastics Ltd.
  • Cardolite
  • Cargill
  • Catalyxx
  • Cathay Industrial Biotech, Ltd.
  • Celanese Corporation
  • Cellicon B.V.
  • Cellucomp Ltd
  • Cellugy
  • Cellutech AB (Stora Enso)
  • CH-Bioforce Oy
  • Checkerspot, Inc.
  • Chempolis Oy
  • Chongqing Bofei Biochemical Products Co., Ltd.
  • Chuetsu Pulp & Paper Co., Ltd.
  • Circa Group
  • Circular Systems
  • CJ CheilJedang Corporation
  • Clariant AG
  • Coastgrass ApS
  • Corumat, Inc.
  • CreaFill Fibers Corporation
  • Cristal Union Group
  • Cruz Foam
  • CuanTec Ltd.
  • Daicel Corporation
  • Daicel Polymer Ltd.
  • DaikyoNishikawa Corporation
  • Daio Paper Corporation
  • Daishowa Paper Products Co. Ltd.
  • DAK Americas LLC
  • Danimer Scientific LLC
  • DENSO Corporation
  • Diamond Green Diesel LLC
  • DIC Corporation
  • DIC Products, inc.
  • DKS Co. Ltd.
  • Dongnam Realize
  • Dongying Hebang Chemical Corp
  • Dow, Inc.
  • DuFor Resins B.V.
  • DuPont
  • DuPont Tate & Lyle Bio Products Co., LLC
  • Eastman Chemical Ltd. Corporation
  • Ecopel
  • Ecoshell
  • Ecovative Design LLC
  • Ecovia Renewables
  • EggPlant Srl
  • Ehime Paper Manufacturing Co. Ltd.
  • EMS-Grivory
  • Eni S.p.A.
  • Enkev
  • Eranova
  • Esbottle Oy
  • Evolved By Nature
  • Evonik Industries AG
  • Evrnu
  • Fairbrics
  • Faircraft
  • Far Eastern New Century Corporation
  • Fiberight
  • Fiberlean Technologies
  • Fillerbank Limited
  • Fiquetex S.A.S
  • FKuR Kunststoff GmbH
  • Flocus
  • Floreon
  • Foamplant BV
  • Fraunhofer Institute for Silicate Research ISC
  • Fraunhofer Institute for Structural Durability and System Reliability LBF
  • Freyzein
  • Fruit Leather Rotterdam
  • Fuji Pigment Co., Ltd.
  • Full Cycle Bioplastics LLC
  • Furukawa Electric Co., Ltd.
  • Futerro
  • Futuramat Sarl
  • Galatea Biotech Srl
  • Gelatex Technologies OÜ
  • Gen3Bio
  • Genecis Bioindustries, Inc.
  • GeneusBiotech BV
  • Genomatica
  • Grabio Greentech Corporation
  • Grado Zero Innovation
  • Granbio Technologies
  • Grupp MAIP
  • GS Alliance Co. Ltd
  • Guangzhou Bio-plus Materials Technology Co., Ltd.
  • Haldor Topsoe A/S
  • Hattori Shoten K.K.
  • Hebei Casda Biomaterials Co., Ltd.
  • Hebei Jiheng Chemical Co., Ltd.
  • Hebei Xinhua Lactic Acid Co.
  • Heilongjiang Chenneng Bioengineering Ltd.
  • Henan Jindan Lactic Acid Technology Co., Ltd.
  • Henan Xinghan Biological Technology Co., Ltd.
  • Hengli Petrochemical
  • Hengshui Jinghua Chemical Co., Ltd.
  • Hexa Chemical Co. Ltd./Nature Gift
  • Hokuetsu Toyo Fibre Co., Ltd.
  • Honext Material SL
  • Hubei Guangshui National Chemical Co., Ltd.
  • Humintech GmbH
  • Hunan Anhua Lactic Acid Co
  • Hya Bioplastics
  • Icytos
  • India Glycols Ltd.
  • Indochine Bio Plastiques (ICBP) Sdn Bhd
  • Indorama Ventures Public Co. Ltd.
  • Infinited Fiber Company Oy
  • Inner Mettle.
  • Inovyn
  • Inspidere B.V.
  • Ioniqa
  • Itaconix
  • JeNaCell GmbH
  • Jiangsu Anpon Electrochemical Co., Ltd
  • Jiangsu Jinhe Hi-Tech Co., Ltd.
  • Jiangsu Senda Biological Engineering Co., Ltd
  • Jiangsu Torise Biomaterials Co., Ltd
  • Jiangsu Yangnong Chemical Group Co., Ltd.
  • Jiangsu Zhongzheng Biochemical Co., Ltd.
  • Jilin COFCO Biomaterial Corporation
  • JinHui ZhaoLang High Technology Co., Ltd.
  • Jungbunzlauer Suisse AG
  • Kalion, Inc.
  • Kami Shoji Company
  • Kaneka Corporation
  • Kao Corporation
  • Kelheim Fibres GmbH
  • Kingfa Sci. & Tech. Co. Ltd.
  • Kolon Industries, Inc.
  • Kraig Biocraft Laboratories
  • KRI Inc.
  • Kusano Sakko K.K.
  • Kyanite Microorganism
  • Lactips S.A.
  • LAM’ON
  • LCY Biosciences
  • Le Qara
  • Lean Orb
  • Lenzing
  • Lenzing AG
  • LEUNA-Harze GmbH
  • LG Chem
  • Lingrove, Inc.
  • Living Ink
  • Lixea
  • Lixea Limited
  • Locus Fermentation Solutions
  • Loick Biowertstoff GmbH
  • Loliware LLC
  • LOTTE Chemical Corporation
  • Lygos, Inc
  • LyondellBasell Industries Holdings B.V.
  • Made of Air GmbH
  • MakeGrowLab
  • Malai Biomaterials Design Pvt. Ltd. (Malai)
  • Mango Materials, Inc.
  • Marea
  • Marine Innovation Co., Ltd
  • Marine Nanofiber Co., Ltd.
  • Marusumi Paper Company Limited
  • Masuko Sangyo Co., Ltd.
  • MedPHA Bio-Tech Co., Ltd
  • Meghmani Finechem Ltd.
  • Mercurius Biorefining Inc
  • METabolic EXplorer S.A. (METEX)
  • Metgen Oy
  • Mitr Phol
  • Mitsubishi Chemical Corporation
  • Mitsubishi Polyester Film GmbH
  • Mitsui Chemicals, Inc.
  • Mobius
  • Modern Meadow, Inc.
  • Modern Synthesis
  • Mogu S.r.l.
  • Mori Machinery Co., Ltd.
  • Multibax Public Co., Ltd.
  • Mura Technology Limited
  • Musashino Chemical Laboratory, Ltd.
  • MYCL
  • MycoWorks
  • Mylium BV
  • Nabaco, Inc.
  • Nafigate Corporation a.s.
  • Nanollose Ltd
  • Nanollose Ltd.
  • Nantong Cellulose Fibers Co., Ltd
  • Nantong Jiuding Biological Engineering Co., Ltd.
  • NatPol
  • Natrify
  • Natural Fiber Welding, Inc.
  • Nature Coatings, Inc.
  • NatureWorks LLC
  • NefFa
  • Neste Oyj
  • New Zealand Natural Fibers (NZNF)
  • Newlight Technologies
  • Newlight Technologies LLC
  • NEXE Innovations Inc.
  • Ningbo Huanyang Chemical Co., Ltd.
  • Ningbo Tianan Biologic Material
  • Nippon Paper Industries
  • Norske Skog AS
  • Northern Technologies International
  • Notpla
  • Nova Kaeru
  • Novamont S.p.A.
  • Novomer
  • NUREL S.A.
  • Nuvi Releaf
  • Nxtlevvel
  • Oakbio, Inc.
  • Ohoskin
  • Oimo
  • Oji Paper Company
  • Oleago
  • Oleon N.V.
  • Orange Fiber S.r.l.
  • Organic Disposables
  • Origin Materials
  • Pangaia Ltd.
  • Paques Biomaterials
  • PHABuilder
  • PHB Industrial S.A.
  • Photanol B.V.
  • Pivot Materials LLC
  • Plafco Fibertech Oy
  • Plantic Technologies Ltd.
  • Plantics B.V.
  • Polaris Renewables LLC
  • Polybion
  • Polyferm
  • Pond Biomaterials
  • Prime Polymer Co., Ltd.
  • Provenance Biofabrics, INc.
  • PT Intera Lestari Polimer
  • PTT MCC Biochem Co., Ltd.
  • Puro Bioplastics
  • Q-milk GmbH
  • Qnature UG
  • Qorium
  • Radical Plastics
  • Radici Group
  • Re:newcell
  • Red Avenue New Materials Group Co., Ltd.
  • Relement BV
  • Relicta Bioplastics
  • RenCom AB
  • Rengo Co., Ltd.
  • Revoltech GmbH
  • RiceHouse srl
  • Ripro Corporation
  • Risho Kogyo Co. Ltd.
  • Rodenburg Biopolymers B.V.
  • Roquette S.A.
  • Royal DSM N.V
  • RWDC Industries
  • SaltyCo Textiles
  • Samyang Corporation
  • Saphium Biotechnology GMBH
  • Saudi Basic Industries Corp. (SABIC)
  • ScobyTec GmbH
  • Seawear Ltd.
  • Sebacic Oman SAOC
  • Sebiplast s.r.l.
  • Seevix Material Sciences Ltd.
  • Seiko PMC Corporation
  • S-EnPol Co., Ltd.
  • Shandong Baisheng Biotechnology Co., Ltd.
  • Shandong Fuwin New Material Co., Ltd.
  • Shandong Landian Biological Technology Co., Ltd.
  • Shandong Minji Chemical Co., Ltd.
  • Shandong Siqiang Chemical Group Co., Ltd.
  • Shanghai Tong-Jie-Liang Biomaterials Co., Ltd.
  • Shanxi Leda Biochemical Co., Ltd.
  • Shanxi Zhengang Chemical Co., Ltd.
  • Sharp Chemical Ind. Co., Ltd.
  • Shenghong Group
  • Shenzhen Ecomann Biotechnology Co., Ltd.
  • Shenzhen Esun Industrial Co., Ltd.
  • Simplifyber, Inc.
  • Sirmax Group
  • SK Chemicals Co., Ltd.
  • Slow Factory Labs
  • Smartfiber AG
  • Solvay SA
  • Soma Bioworks/White Lemur Co.
  • Spectrus Sustainable Solutions Pvt Ltd
  • Spero Renewables
  • Spiber, Inc.
  • Spidey Tek
  • Spinnova Oy
  • Spolchemie
  • Spora Biotech
  • STORA ENSO OYJ
  • Sugino Machine Limited
  • Sulapac Oy
  • Sulzer Chemtech AG
  • Sunar Misir
  • SUPLA Bioplastics
  • Sway
  • TAIF-NK
  • Tandem Repeat
  • Tanin sevnica kemicna industrija
  • TBM Co., Ltd.
  • TechnipFMC
  • TECNARO GmbH
  • Teijin Ltd
  • Tenbro Bamboo Company
  • TerraVerdae BioWorks Inc
  • Teysha Technologies Limited
  • thyssenkrupp Industrial Solutions AG
  • Tianan Biologic Material Co., Ltd.
  • Tianjin GreenBio Materials Co., Ltd
  • Tianxing Biotechnology Co., Ltd.
  • Tômtex
  • Tongliao Xinghe Biotechnology Co., Ltd.
  • Toray
  • Toray Industries, Inc.
  • TotalEnergies Corbion
  • Toyobo Co., Ltd.
  • Toyota Boshoku Corporation
  • traceless materials GmbH
  • Treemera GmbH
  • TripleW
  • TS Tech Co., Ltd.
  • UBQ Materials
  • Uluu
  • Unitika Co., Ltd.
  • Unitika Ltd.
  • Universal Bio Pack Co., Ltd.
  • UPM Biocomposites
  • UPM-Kymmene Oyj
  • Vegatex Biotech
  • Vegea srl
  • VEnvirotech Biotechnology SL
  • ViaeX Technologies
  • Vibers BV
  • Virent Inc.
  • Visolis Inc.
  • VitroLabs Inc
  • von Holzhausen
  • VTT Technical Research Centre of Finland Ltd
  • Vynova
  • Werewool
  • WeylChem International GmbH
  • Woodly Ltd.
  • Worn Again Technologies
  • Wuhan Sanjiang Space Good Biotech Co., Ltd
  • Xampla
  • Xinjiang Lanshan Tunhe
  • Yield10 Bioscience, Inc.
  • Yoshikawakuni Plastics Industries Co., Ltd.
  • Zelfo Technology
  • Zhangjiagang Glory Chemical Industry Co., Ltd
  • Zhejiang Hangzhou Xinfu Pharmaceutical Co., Ltd.
  • Zhejiang Hisun Biomaterials Co., Ltd.
  • Zhejiang Youcheng New Materials Co., Ltd
  • Zvnder

Methodology

Loading
LOADING...