+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Silicon-Based Hybrid Nanoparticles. Fundamentals, Properties, and Applications. Micro and Nano Technologies

  • Book

  • September 2021
  • Elsevier Science and Technology
  • ID: 5308612

Silicon-Based Hybrid Nanoparticles: Fundamentals, Properties, and Applications focuses on the fundamental principles and promising applications of silicon-based hybrid nanoparticles in nanoelectronics, energy storage/conversion, catalysis, sensors, biomedicine, environment and imaging. This book is an important reference source for materials scientists and engineers who are seeking to understand more about the major properties and applications of silicon-based hybrid nanoparticles. As the hybridization of silicon nanoparticles with other semiconductors or metal oxides nanoparticles may exhibit superior features, when compared to lone, individual nanoparticles, this book provides the latest insights.

In addition, the silicon/iron oxide hybrid nanoparticles also possess excellent fluorescence, super-paramagnetism, and biocompatibility that can be effectively used for the diagnostic imaging system in vivo. Similarly, gold-silicon nanohybrids could be used as highly efficient near-infrared hyperthermia agents for cancer cell destruction.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

PART 1: BASIC PRINCIPLES 1. Silicon-based hybrid nanoparticles: An introduction 2. Methods for synthesis of silicon-based hybrid nanoparticles 3. Nanoscale characterization of silicon-based hybrid nanoparticles 4. Electronic transportation in silicon-based hybrid nanoparticles 5. Exciton-photon interaction in silicon-based hybrid nanoparticles 6. Exciton-Magnoninteraction in silicon-based hybrid nanoparticles 7. Exciton-Plasmon interaction in silicon-based hybrid nanoparticles

PART 2: THERMAL, ELECTRICAL, OPTICAL, MAGNETIC, AND TOXIC PROPERTIES 8. Properties of Silicon-Metals hybrid nanoparticles 9. Properties of Silicon-Metal oxides hybrid nanoparticles 10. Properties of Silicon-Polymers hybrid nanoparticles 11. Properties of Silicon-Carbon (CNTs/graphene) hybrid nanoparticles 12. Properties of Silicon-Germanium hybrid nanoparticles 13. Properties of Silicon-TiO2 hybrid nanoparticles 14. Properties of Silicon-ZnO hybrid nanoparticles 15. Properties of Silicon-ZnS hybrid nanoparticles

PART 3: EMERGING APPLICATIONS 16. Energy storage (lithium-ion batteries.) 17. Energy conversion (solar energy harvesting.) 18. Catalysis 19. Biosensors 20. Hyperthermia treatment 21. MRI/CT/Fluorescence optical imaging 22. Biomedical applications 23. Environmental applications 24. Future perspectives

Authors

Sabu Thomas Professor and Director, International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, India.

Sabu Thomas is a Professor and Director of the International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, India. Professor Thomas is internationally recognized for his contributions to polymer science and engineering, with his research interests encompassing polymer nanocomposites, elastomers, polymer blends, interpenetrating polymer networks, polymer membranes, green composites, nanocomposites, nanomedicine, and green nanotechnology. His groundbreaking inventions in polymer nanocomposites, polymer blends, green bionanotechnology, and nano-biomedical sciences have significantly advanced the development of new materials for the automotive, space, housing, and biomedical fields.

Tuan Anh Nguyen Senior Principal Research Scientist, Institute for Tropical Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam. Tuan Anh Nguyen is Senior Principal Research Scientist at the Institute for Tropical Technology, Vietnam Academy of Science and Technology, Vietnam. He received B.S. in Physics from Hanoi University in 1992, and Ph.D. in Chemistry from the Paris Diderot University (France) in 2003. He was Visiting Scientist at Seoul National University (South Korea, 2004) and University of Wollongong (Australia, 2005). He then worked as Postdoctoral Research Associate and Research Scientist in the Montana State University (USA), 2006-2009. In 2012, he was appointed as the Head of the Microanalysis Department at Institute for Tropical Technology. His research activities include smart sensors, smart networks, smart hospitals, smart cities and digital twins. He edited over 70 Elsevier, 12 CRC Press, 1 Springer, 1 RSC and 2 IGI Global books. He is Editor-In-Chief of "Kenkyu Journal of Nanotechnology & Nanoscience". Mazaher Ahmadi Assistant Professor, Bu-Ali Sina University, Hamedan, Islamic Republic of Iran. Dr. Mazaher Ahmadi received his Ph.D. in Analytical Chemistry from Bu-Ali Sina University in 2017. He has been to Alicante University, Spain, and Stockholm University, Sweden, as a visiting researcher in 2015-2016 and 2016-2017, respectively. He became an Assistant Professor of Analytical Chemistry at Bu-Ali Sina University in 2019. His professional experiences also include two post-doctorate research courses at Shiraz University of Medical Science, Iran, and Bu-Ali Sina University, Iran, in 2017-2018 and 2018-2019, respectively. Dr. Ahmadi is an expert in nanotechnology, analytical method development, pollutant removal, and wastewater treatment. He has edited six Elsevier books. He also has contributed eleven book chapters with Elsevier. Ghulam Yasin Researcher, School of Environment and Civil Engineering, Dongguan University of Technology, Guangdong, China. Ghulam Yasin is a researcher in the School of Environment and Civil Engineering at Dongguan University of Technology, Guangdong, China. His expertise covers the design and development of hybrid devices and technologies of carbon nanostructures and advanced nanomaterials for for real-world impact in energy-related and other functional applications. Nirav Joshi Postdoctoral Researcher, Physics Department, Sao Carlos Institute of Physics, University of Sao Paulo, Brazil. Dr Nirav Joshi is a Postdoctoral Researcher in the Physics Department, Sao Carlos Institute of Physics at the University of Sao Paulo, Brazil. His research interests are nanomaterial synthesis and characterization, thin films, micro-fabrication, gas sensors, Langmuir-Blodgett thin films, flexible gas sensors, and high-k nano-structured materials.