+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Enhancing Communications with MIMO - Technologies, Markets and Applications

  • PDF Icon

    Report

  • 155 Pages
  • June 2023
  • Region: Global
  • PracTel Inc
  • ID: 5321668

This report researches advanced technologies and markets for wireless and wired communications systems that MIMO supports - Multiple Input/Multiple Output structures - to enhance their performance. It revises and updates earlier issues of the report as well as adds the analysis of latest technologies.

Users’ demand for more efficient networking brought to life many technological innovations. One of them is MIMO, which became very popular in wireless systems - almost all recent and future 3GPP standards use (or will be using) variations of such a technique. MIMO is also used in wireline systems.

This report is based on the analysis of MIMO-based communications systems, their technologies, and markets specifics.

In particular, the following industry standards that utilize MIMO have been considered:

  • 3GPP LTE
  • IEEE802.11ax
  • IEEE802.11ay
  • IEEE 802.11ac
  • HomePlug AV2
  • ITU G.hn - MIMO.

The goal of this report is to characterize MIMO advantages and specifics for each standard. It also addresses the market characteristics of discussed technologies. The report concentrates on profiling the industry players and their products. MIMO characteristics, structures, and types are also addressed and compared. The report also surveys patents related to the discussed subjects.

The report is written for a broad audience of managers and technical staff who are involved in the design and implementation of advanced communications systems.

Table of Contents

1.0    Introduction
1.1 General
1.2 Goal
1.3 Structure
1.4 Research Methodology
1.5 Target Audience

2.0 MIMO - Concept, Functions and Types
2.1 History
2.2 Concept
2.3 Types of MIMO: Examples
2.3.1 CoMP MIMO
2.3.2 Massive MIMO
2.3.3 MU-MIMO
2.3.4 MIMO-OFDM
2.3.5 Mobile Networked MIMO
2.3.6 MIMO - by Type of Communications Media
2.3.7 Summary
2.4 MIMO Benefits (Wireless Systems)

3.0 MIMO in Wireless Systems
3.1 LTE Development and MIMO
3.1.1 Releases - 3GPP
3.1.2 LTE Timetable
3.1.3 Broadband Mobile Communications-Phases
3.1.4 LTE Standardization-Industry Collaboration
3.1.5 Industry Initiative
3.1.6 Intellectual Property
3.1.7 Key Features of LTE
3.1.8 Details
3.1.8.1 Evolved UMTS Radio Access Network (EUTRAN)
3.1.8.2 UE Categories
3.1.8.3. Evolved Packet Core (EPC)
3.1.9 LTE Advanced
3.1.10 SON
3.1.11 Voice Support
3.1.11.1 VoLTE
3.1.12 Market
3.1.12.1 Drivers
3.1.12.2 Demand: Wireless Broadband
3.1.12.3 LTE Market Projections
3.1.13 Summary: LTE Benefits

3.1.14 Industry
  • Altair Semiconductor (a Sony Group Company)
  • Aricent (now Altran)
  • AceAxis
  • Cisco
  • CommAgility
  • Ericsson
  • Fujitsu
  • Huawei
  • Lime Microsystems
  • Motorola Solutions
  • Nokia
  • Qualcomm
  • Samsung
  • Sequans
  • Signalion
  • TI
  • U-blox
  • ZTE
3.1.15 Specifics: LTE MIMO
3.1.15.1 Techniques
3.1.15.2 Major Applications
3.1.15.3 Modes
3.1.15.4 MIMO: LTE Release 8
3.1.15.5 MIMO: LTE Release 9
3.1.15.6 MIMO: LTE Advanced and Further Developments
3.1.15.7 LTE/LTE-A - MIMO Benefits
3.1.15.8 Market Projections
3.1.16 5G NR and MIMO
3.2 IEEE802.11ax (Wi-Fi 6) and MIMO
3.2.1 Background
3.2.2 Focal Points
3.2.3 Major Features
3.2.4 Major Applications
3.2.5 Physical Layer
3.2.5.1 Multi-User Operation
3.2.5.2 Role of MU-MIMO
3.2.5.3 Multi-User OFDMA
3.2.6 MAC
3.2.6.1 Spatial Reuse with Color Codes
3.2.6.2 Power-saving with Target Wake Time
3.2.6.3 Density
3.2.7 802.11ax Operating Modes
3.2.7.1 MU-MIMO (Wi-Fi 6 / 802.11ax)
3.2.8 Industry
  • Aerohive (Extreme Networks)
  • Asus
  • Broadcom
  • Huawei
  • Marvell
  • Netgear
  • Ruckus
  • Quantenna (acquired by On Semiconductor in 2019)
  • Qualcomm
3.2.9 Beyond Wi-Fi 6 - Extreme High Throughput Wi-Fi - 802.11be
3.3 MIMO Role in 802.11ac Development
3.3.1 General - Improving 802.11n Characteristics
3.3.2 Approval
3.3.3 Major Features: Summary
3.3.4 Major Benefits
3.3.5 Usage Models
3.3.6 Waves
3.3.7 Market Projections
3.3.8 Industry
  • Aruba - HP
  • Celeno
  • Broadcom
  • Buffalo
  • Cisco
  • D-Link
  • Fortinet
  • Linksys
  • Marvell
  • Netgear
  • Qualcomm
  • Quantenna (acquired by On Semiconductor in 2019)
  • Redpine Signals
3.3.9 MIMO and 802.11ac Standard
3.3.9.1 Comparison
3.4 802.11ay and MIMO Technology
3.4.1 Timetable
3.4.2 Scope
3.4.3 Need
3.4.4 Usage Cases (Examples)
3.4.5 Expected Characteristics
3.4.6 MIMO - Preliminary View

4.0 MIMO in Wireline Communications
4.1 HomePNA and ITU MIMO-based Technologies
4.1.1 HomeGrid Forum
4.1.1.1. Specifications
4.1.1.1.1 Background
4.1.1.1.2 HomePNA Specification 3.1: Major Features
4.1.1.1.3 Fast EoC HomePNA
4.1.1.2 Major Benefits
4.1.2 ITU G.hn
4.1.2.1 General
4.1.2.2 G.hn Details
4.1.2.2.1 Differences
4.1.2.2.2 Common Features
4.1.2.3 Acceptance
4.1.2.4 HomePNA and G.hn Documents
4.1.2.5 G.hn-mimo - G.9963
4.1.2.5.1 Drivers
4.1.2.5.2 G.9963 Details
4.1.2.5.2.1 General
4.1.2.5.2.2 Wireline Specifics - G.hn-mimo
4.1.2.5.2.3 Scope
4.1.2.5.2.4 Performance
4.1.2.6 Industry
  • Comtrend
  • Cambridge Industries Group (CIG)
  • Marvell
  • MaxLinear/devolo
  • ST&T
  • Xingtera
4.2 HomePlugAV2-mimo
4.2.1 General
4.2.1.1 Certification
4.2.2 Major Improvements
4.2.3 Specification Details
4.2.3.1 MIMO Mechanism
4.2.4 Industry
  • Aztech
  • Broadcom
  • D-Link
  • Extollo
  • Gigafast Ethernet
  • Intersil (acquired by Renesas in 2017)
  • Lea Networks
  • Sineoji
  • Trendnet
  • TP-Link
  • Qualcomm Atheros
  • Zyxel
5.0 Conclusions
  • Attachment I: Patents Survey LTE - MIMO (2018-2020)
  • Attachment II: Patents Survey - 802.11ac MIMO (2018-2020)
  • Attachment III: Patents Survey - 802.11ax MIMO (2018-2020)
  • Attachment IV: Patents Survey - 802.11ay MIMO (2018-2020)
  • Attachment V: Patents Survey - G.hn-MIMO (2014-2020)

Samples

Loading
LOADING...

Companies Mentioned

  • Altair Semiconductor (a Sony Group Company)     
  • Aricent (now Altran)     
  • AceAxis     
  • Aerohive (Extreme Networks)     
  • Asus     
  • Aruba – HP     
  • Aztech     
  • Broadcom        
  • Buffalo        
  • Cisco     
  • CommAgility     
  • Celeno     
  • Cisco     
  • Comtrend     
  • Cambridge Industries Group (CIG)     
  • D-Link          
  • Ericsson     
  • Extollo     
  • Fujitsu     
  • Fortinet     
  • Gigafast Ethernet         
  • Huawei     
  • Intersil (acquired by Renesas in 2017)     
  • Lime Microsystems     
  • Linksys     
  • Lea Networks     
  • Motorola Solutions     
  • Marvell         
  • MaxLinear/devolo     
  • Nokia     
  • Netgear        
  • Qualcomm     
  • Quantenna (acquired by On Semiconductor in 2019)             
  • Qualcomm Atheros     
  • Ruckus     
  • Redpine Signals     
  • Samsung     
  • Sequans     
  • Signalion     
  • ST&T     
  • Sineoji     
  • TI     
  • Trendnet     
  • TP-Link     
  • U-blox     
  • Xingtera     
  • ZTE     
  • Zyxel  

Methodology

Considerable research was done using the Internet. Information from various Web sites was studied and analyzed; evaluation of publicly available marketing and technical publications was conducted.

Telephone conversations and interviews were held with industry analysts, technical experts and executives. In addition to these interviews and primary research, secondary sources were used to develop a more complete mosaic of the market landscape, including industry and trade publications, conferences and seminars.

The overriding objective throughout the work has been to provide valid and relevant information. This has led to a continual review and update of the information content.

 

Loading
LOADING...