+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Cryogenic Valves for Liquefied Natural Gas Plants

  • Book

  • May 2022
  • Elsevier Science and Technology
  • ID: 5483933

Natural gas and liquefied natural gas (LNG) continue to grow as a part of the sustainable energy mix. While oil and gas companies look to lower emissions, one key refinery component that contributes up to 60% of emissions are valves, mainly due to poor design, sealing, and testing. Cryogenic Valves for Liquefied Natural Gas Plants delivers a much-needed reference that focuses on the design, testing, maintenance, material selection, and standards needed to stay environmentally compliant at natural gas refineries.

Covering technical definitions, case studies, and Q&A, the reference includes all ranges of natural gas compounds, including LPG, CNG, NGL, and PNG. Key design considerations are included that are specific for cryogenic services, including a case study on cryogenic butterfly valves. The material selection process can be more complex for cryogenic services, so the author goes into more detail about materials that adhere to cryogenic temperature resistance. Most importantly, testing of valves is covered in depth, including shell test, closure or seat test, and thermal shock tests, along with tactics on how to prevent dangerous cryogenic leaks, which are very harmful to the environment. The book is a vital resource for today's natural gas engineers.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

1. Natural gas technology 2. LNG technology 3. Cryogenic valve design features 4. Corrosion study and material selection for cryogenic valves in an LNG plant 5. Cryogenic valve standards 6. Cryogenic valve testing

Authors

Karan Sotoodeh Senior Lead Engineer, Valves and Actuators, Valve Engineering Group, Manifold department, Baker Hughes, Oslo, Norway. Karan Sotoodeh recently earned his PhD in Safety and Reliability in Mechanical Engineering from the University of Stavanger. Previously, Karan was the Senior / Lead Engineer in valves and actuators for Baker Hughes, one of the world's largest oil field services company. He was responsible for engineering and delivering valves and actuators in subsea manifolds, working with valve suppliers, R&D activities, and maintaining the company's valve database. He has also worked for AkerSolutions, NLI Engineering, and Nargan Engineers as a senior specialist in piping and valves, assisting with many projects around the world. He is the author of Prevention of Valve Fugitive Emissions in the Oil and Gas Industry and Subsea Valves and Actuators for the Oil and Gas Industry, both published by Elsevier. Karan earned a Master of Research in Mechanical Engineering and a Masters in Oil and Gas Engineering, both from Robert Gordon University of Aberdeen, and a Bachelors in Industrial Engineering from the Iran University of Science and Technology