+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Vertical Axis Hydrokinetic Turbines: Numerical and Experimental Analyses: Volume 5

  • Book

  • December 2021
  • Bentham Science Publishers Ltd
  • ID: 5521014
This handbook is a guide to numerical and experimental processes that are used to analyze and improve the efficiency of vertical axis rotors. Chapters present information that is required to optimize the geometrical parameters of rotors or understand how to augment upstream water velocity.

The authors of this volume present a numerical model to characterize the water flow around the vertical axis rotors using commercial CFD code in Ansys Fluent®. The software has been used to select adequate parameters and perform computational simulations of spiral Darrieus turbines. The contents of the volume explain the experimental procedure carried out to evaluate the performance of the spiral Darrieus turbine, how to characterize the water flow in the vicinity of the tested turbine and the method to assess the spiral angle influence on the turbine performance parameters. Results for different spiral angles (ranging from 10° to 40°) are presented.

This volume is a useful handbook for engineers involved in power plant design and renewable energy sectors who are studying the computational fluid dynamics of vertical axis turbines (such as Darrieus turbines) that are used in hydropower projects.

Key Features:

  • 4 chapters that cover the numerical and experimental analysis of vertical axis rotors and hydrokinetic turbines
  • Simple structured layout for easy reading (methodology, models and results)
  • Bibliographic study to introduce the reader to the subject
  • A wide range of parameters included in experiments
  • A comprehensive appendix of tables for mechanical parameters, statistical models, rotor parameters and geometric details.

Table of Contents

Chapter 1 Bibliographic Study

1. Introduction

2. Hydropower
2.1. Run-Of-River Hydropower Plants
2.2. Storage Hydropower Plants
2.3. Pumped-Storage Waterpower Plants
2.4. In-Stream (Hydrokinetic) Hydropower Plants

3. Theoretical Notions Of Water Rotors
3.1. Power Available In The Incoming Water Flow
3.2. Betz's Law
3.3. Performance Parameters

4. Classification Of The Water Rotors
4.1. Axial-Flow Rotors
4.2. Cross-Flow Rotors
4.2.1. Savonius Rotor
4.2.2. Darrieus Rotor
4.2.3. Gorlov Rotor

5. Bibliographic Syntheses
5.1. Savonius Rotor
5.1.1. Aspect Ratio Effect
5.1.2. Overlap Ratio Effect
5.1.3. Number Of Blades Effect
5.1.4. Number Of Rotor Stages Effect
5.1.5. Blade Profile Effect
5.1.6. Reynolds Number Effect
5.2. Darrieus Rotor
5.3. Gorlov Turbine

6. Conclusion

Chapter 2 Numerical Parameters Effect

1. Introduction

2. Structure Of The Cfd Code

3. Mathematical Formulation
3.1. Continuity Equation
3.2. Momentum Conservation Equations
3.3. Turbulence Models
3.3.1. Rng K-Ε Model
3.3.2. Realizable K-Ε Model
3.3.3. Sst K-Ω Turbulence Model
3.3.4. Transition Sst Turbulence Model

4. Meshing Effect
4.1. Physical Model
4.2. Computational Domain And Boundary Conditions
4.3. Performance Characteristics

5. Turbulence Model Effect
5.1. Physical Model
5.2. Limit Conditions
5.3. Performance Characteristics
5.4. Magnitude Velocity
5.5. Static Pressure
5.6. Turbulent Kinetic Energy
5.7. Turbulence Eddy Dissipation
5.8. Eddy Viscosity

6. Rotating Domain Size Effect
6.1. Performance Parameters
6.2. Magnitude Velocity
6.3. Static Pressure
6.4. Turbulent Kinetic Energy
6.5. Turbulence Eddy Dissipation
6.6. Turbulent Viscosity

7. Conclusion

Chapter 3 Investigation Of Spiral Darrieusturbine

1. Introduction

2. Experimental Methodology
2.1. Spiral Darrieus Turbine
2.2. Test Site Of Sdt
2.3. Performance Parameters Evaluation
2.4. Determination Of Static-Torque

3. Mathematical Formulations

4. Experimental Outcomes

5. Numerical Model
5.1. Computational Domain
5.2. Meshing

6. Comparison Between Experimental And Computational Outcomes

7. Numerical Results
7.1. Velocity Field
7.2. Magnitude Velocity
7.3. Static Pressure
7.4. Turbulent Kinetic Energy
7.5. Turbulence Eddy Dissipation
7.6. Eddy Viscosity
7.7. Power Coefficient

8. Conclusion

Chapter 4 Performance Investigation Of Spiral And Spherical Turbines

1. Introduction

2. Spiral Savonius Turbine
2.1. Experimental Methodology
2.2. Experimental Results
2.3. Numerical Methodology And Validation
2.4. Numerical Results
2.4.1. Magnitude Velocity
2.4.2. Static Ρpessure
2.4.3. Efficiency Parameters

3. Spherical Darrieus Turbine
3.1. Numerical Method
3.2. Numerical Results
3.2.1. Efficiency Parameters
3.2.2. Velocity Profiles

4. Conclusion
  • Conclusions And Perspectives
  • Glossary
  • References
  • Subject Index

Author

  • Mabrouk Mosbahi
  • Ahmed Ayadi
  • Zied Driss