+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Bio-based Flame-Retardant Technology for Polymeric Materials

  • Book

  • August 2022
  • Elsevier Science and Technology
  • ID: 5548597

Bio-Based Flame Retardants for Polymeric Materials provides a comprehensive overview of flame retardants derived directly and indirectly from plant sources, drawing on cutting-edge research and covering preparation methods, testing and evaluation techniques, enhanced properties, and end applications. Chapters introduce bio-based materials in the context of additives for flame retardancy, explaining fundamentals and testing methods and analyzing synthetic approaches and the potential advantages of pursuing a bio-based approach. This is followed by detailed coverage of bio-based retardants, with each chapter covering a specific source and guiding the reader systematically through preparation techniques, evaluation methods, properties and applications.

Throughout the book, the latest progress in the field is critically reviewed, and there is a continual emphasis on novel approaches to achieve enhanced properties and performant materials. This is an essential guide for all those with an interest in innovative, sustainable flame retardant additives for polymeric materials, including researchers, scientists, advanced students, and more.

Please Note: This is an On Demand product, delivery may take up to 11 working days after payment has been received.

Table of Contents

1. Introduction to Bio-Based Materials for Flame Retardancy
2. Synthetic Approaches to Bio-Based Flame Retardant Polymeric Materials
3. Fire Testing Methods of Bio-Based Flame Retardant Polymeric Materials
4. Cellulose- Based Flame Retardant for Polymeric Materials
5. Lignin and Its Derivatives: Potential Feedstock for Renewable Flame Retardant Polymers
6. Cardanol- Based Flame Retardant Polymeric Materials
7. Chitosan- Based Flame Retardant Polymeric Materials and Their Applications
8. Development of Novel Flame Retardant Polymers Based on Eugenol
9. Flame Retardants from Starch: Phosphorus Derivatives of Isosorbide
10. Flame Retardant Polymeric Materials from Renewable Vanillin
11. Furan-Based Flame Retardant Polymeric Materials
12. Advances in Alginate-Based Flame Retardant Polymeric Materials
13. Phenolic-based Phosphorus Flame Retardants for Polymeric Materials
14. Recent advances in the development and application of P- and N-modified starch derivatives as novel biobased flame retardants from renewable resources
15. Development of Natural Fiber Reinforced Flame Retardant Polymer Composites
16. Vegetable Oils-based Flame Retardant Polymeric Materials
17. Preparation, Flame Retardancy and Mechanism of Natural Fiber/Polymer Composites
18. Perspective and Challenges in Using Bio-Based Flame Retardant

Authors

Yuan Hu State Key lab of Fire Science (SKLFS), University of Science and Technology of China (USTC), Hefei, Anhui, China. Professor Yuan Hu is Director of the Institute of Fire Safety Materials at USTC. He obtained his PhD from USTC in 1997. He been active in fire safety materials research for more than 30 years. His main research interests include polymer/inorganic compound nanocomposites, new flame retardants and their flame retardant polymers, synthesis and properties of inorganic nanomaterials, combustion, and the decomposition mechanisms of polymers. Prof. Hu has published more than 600 SCI papers and he has more than 40 patents to his credit. In 2017, he was awarded the 2nd Prize of the National Natural Science Award by the Chinese Government. Hafezeh Nabipour Associate professor, State Key lab of Fire Science (SKLFS), University of Science and Technology of China (USTC), Hefei, Anhui, China. Hafezeh Nabipour is currently working as an associate professor at the University of Science and Technology of China (USTC). She received her PhD degree from the Azarbaijan Shahid Madani University (Iran, 2015). She worked at Azarbaijan Shahid Madani University and the University of Tehran for three years. From 2018, she moved to the USTC as a visiting scholar and a post-doctoral researcher working with Prof. Yuan Hu. She has authored more than 50 ISI-indexed articles in peer-reviewed international journals. She was also awarded the National Natural Science Foundation of China for the research fund for international young researchers, the Chinese Academy of Science President's International Fellowship Initiative (PIFI) and the President Award of Iran National Science Foundation. Her research interests focus on the design of novel bio-based flame retardants and bio-nanocomposite with high performance. Xin Wang State Key lab of Fire Science (SKLFS), University of Science and Technology of China (USTC), Hefei, Anhui, China. Dr. Xin Wang is currently working as an associate professor at the University of Science and Technology of China (USTC). He completed his PhD in Safety Science and Engineering from USTC in 2013. His research interests focus on synthesis and application of bio-based flame retardants, preparation of layered nanomaterials and their use in flame retardant polymer nanocomposites. He has authored or co-authored more than 150 SCI-indexed papers in peer-reviewed international journals, 5 book chapters and 1 monograph. He was also awarded the 2nd Prize of the National Natural Science Award, by the Chinese Government in 2017.