+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)
New

Wide-Bandgap Power Semiconductor Market - Forecasts from 2025 to 2030

  • PDF Icon

    Report

  • 144 Pages
  • March 2025
  • Region: Global
  • Knowledge Sourcing Intelligence LLP
  • ID: 5576402
The wide-bandgap power semiconductor market is evaluated at US$5.13 billion in 2025, growing at a CAGR of 15.91%, reaching the market size of US$10.74 billion by 2030.

Wide-bandgap (WBG) semiconductors, when modified with molecular species, exhibit distinctive optical and electronic properties. These components are characterized by their smaller size, faster operation, enhanced reliability, and greater efficiency than silicon-based counterparts in power electronics. The unique scientific and technological attributes of WBG power semiconductors have led to their increasing popularity in high-performance optoelectronic and electronic devices. With the rising demand for consumer electronics and related technologies like fast charging, the market for WBG semiconductors is expected to expand significantly. The devices transform their physical characteristics at high frequencies, while their chemical and mechanical features find applications in optoelectronic uses. The combination of high performance and novel properties is opening new opportunities and paving the way for the market's growth in the years ahead.

Market Trends:

  • Increasing Adoption of Silicon Carbide (SiC) and Gallium Nitride (GaN) Materials: Wide and ultrawide bandgap (WBG) power electronic semiconductors, such as silicon carbide (SiC) and gallium nitride (GaN), are revolutionizing the power electronics industry. These advanced materials outperform traditional silicon-based products, offering superior performance and efficiency. Recent advancements in WBG semiconductors have focused on improving material quality, device design, and manufacturing processes. Collaborative efforts between academia and industry have led to the development of high-quality SiC and GaN substrates, advancements in crystal growth techniques, and refined production methods. These innovations have enhanced material performance, increased device yields, and reduced manufacturing costs, making WBG semiconductors more commercially viable.
SiC, with a bandgap energy of approximately 3.3 electron volts (eV) compared to silicon’s 1.1 eV, is one of the most extensively researched and widely available WBG materials. SiC-based power devices offer significant advantages, including lower conduction and switching losses, higher temperature tolerance, and improved overall efficiency. Similarly, GaN, with a bandgap energy of around 3.4 eV, has gained considerable attention for its exceptional performance characteristics, such as high breakdown voltages, fast switching speeds, and low on-resistance.
  • Rising Demand for High-Efficiency Power Electronics: The growing need for high-efficiency power electronics in sectors like electric vehicles (EVs), renewable energy, and telecommunications is a key driver of the WBG semiconductors market. SiC is particularly favored for high-voltage applications, such as EV inverters and fast chargers, while GaN’s high-frequency switching capabilities are making it ideal for 5G base stations and low-voltage power supplies. The shift toward WBG semiconductors is becoming essential as industries converge toward energy-efficient solutions. Additionally, advancements in wafer quality and substrate production are reducing costs and enhancing functionality, enabling mass-market adoption of WBG semiconductors. This rapid growth underscores their role as a central technology in the global transition to low-power electronics.
  • Americas Experiencing Significant Growth in the Forecast Period: The Americas, particularly the United States, are witnessing exponential growth in the WBG semiconductors market, driven by the increasing demand for energy-efficient electronic devices across various industries. The growing focus on electric vehicles and the transition to renewable energy sources are further boosting the demand for WBG power semiconductors.
For example, the need for energy-efficient devices in consumer electronics, automotive, and renewable energy applications is a major growth factor. WBG semiconductors, such as SiC and GaN components, offer superior performance and efficiency compared to traditional silicon-based devices. Additionally, the rising emphasis on EVs and renewable energy is accelerating the adoption of WBG power semiconductors, expanding the market in the United States and beyond.

Some of the major players covered in this report include ROHM Semiconductor, Wolfspeed, Inc., STMicroelectronics, Infineon Technologies AG, Mitsubishi Electric Corporation, Semikron Danfoss, Texas Instruments, among others.

Key Benefits of this Report:

  • Insightful Analysis: Gain detailed market insights covering major as well as emerging geographical regions, focusing on customer segments, government policies and socio-economic factors, consumer preferences, industry verticals, and other sub-segments.
  • Competitive Landscape: Understand the strategic maneuvers employed by key players globally to understand possible market penetration with the correct strategy.
  • Market Drivers & Future Trends: Explore the dynamic factors and pivotal market trends and how they will shape future market developments.
  • Actionable Recommendations: Utilize the insights to exercise strategic decisions to uncover new business streams and revenues in a dynamic environment.
  • Caters to a Wide Audience: Beneficial and cost-effective for startups, research institutions, consultants, SMEs, and large enterprises.

What can businesses use this report for?

Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence.

Report Coverage:

  • Historical data from 2022 to 2024 & forecast data from 2025 to 2030
  • Growth Opportunities, Challenges, Supply Chain Outlook, Regulatory Framework, and Trend Analysis
  • Competitive Positioning, Strategies, and Market Share Analysis
  • Revenue Growth and Forecast Assessment of segments and regions including countries
  • Company Profiling (Strategies, Products, Financial Information, and Key Developments among others)

Wide-Bandgap Power Semiconductor Market is analyzed into the following segments:

By Material

  • Silicon Carbide
  • Gallium Nitride
  • Diamond
  • Gallium Oxide
  • Aluminium Nitride

By Application

  • Data Centers
  • Renewable Energy Generation
  • Hybrid and Electric Vehicles
  • Motor Drives

By Geography

  • Americas
  • US
  • Europe, the Middle East, and Africa
  • Germany
  • Netherlands
  • Others
  • Asia Pacific
  • China
  • Japan
  • Taiwan
  • South Korea
  • Others

Table of Contents

1. INTRODUCTION
1.1. Market Overview
1.2. Market Definition
1.3. Scope of the Study
1.4. Market Segmentation
1.5. Currency
1.6. Assumptions
1.7. Base and Forecast Years Timeline
1.8. Key Benefits to the Stakeholder
2. RESEARCH METHODOLOGY
2.1. Research Design
2.2. Research Processes
3. EXECUTIVE SUMMARY
3.1. Key Findings
4. MARKET DYNAMICS
4.1. Market Drivers
4.2. Market Restraints
4.3. Porter’s Five Forces Analysis
4.3.1. Bargaining Power of Suppliers
4.3.2. Bargaining Power of Buyers
4.3.3. Threat of New Entrants
4.3.4. Threat of Substitutes
4.3.5. Competitive Rivalry in the Industry
4.4. Industry Value Chain Analysis
4.5. Analyst View
5. WIDE-BANDGAP POWER SEMICONDUCTOR MARKET BY MATERIAL
5.1. Introduction
5.2. Silicon Carbide
5.3. Gallium Nitride
5.4. Diamond
5.5. Gallium Oxide
5.6. Aluminium Nitride
6. WIDE-BANDGAP POWER SEMICONDUCTOR MARKET BY APPLICATION
6.1. Introduction
6.2. Data Centers
6.3. Renewable Energy Generation
6.4. Hybrid and Electric Vehicles
6.5. Motor Drives
7. WIDE-BANDGAP POWER SEMICONDUCTOR MARKET BY GEOGRAPHY
7.1. Americas
7.1.1. US
7.2. Europe, Middle East, and Africa
7.2.1. Germany
7.2.2. Netherland
7.2.3. Others
7.3. Asia Pacific
7.3.1. China
7.3.2. Japan
7.3.3. Taiwan
7.3.4. South Korea
7.3.5. Others
8. COMPETITIVE ENVIRONMENT AND ANALYSIS
8.1. Major Players and Strategy Analysis
8.2. Market Share Analysis
8.3. Mergers, Acquisitions, Agreements, and Collaborations
8.4. Competitive Dashboard
9. COMPANY PROFILES
9.1. ROHM Semiconductor
9.2. Wolfspeed, Inc.
9.3. STMicroelectronics
9.4. Infineon Technologies AG
9.5. Mitsubishi Electric Corporation
9.6. Semikron Danfoss
9.7. Texas Instruments
9.8. Analog Devices, Inc.
9.9. Navitas Semiconductor
9.10. Microchip Technology Inc.

Companies Mentioned

  • ROHM Semiconductor
  • Wolfspeed, Inc.
  • STMicroelectronics
  • Infineon Technologies AG
  • Mitsubishi Electric Corporation
  • Semikron Danfoss
  • Texas Instruments
  • Analog Devices, Inc.
  • Navitas Semiconductor
  • Microchip Technology Inc.

Methodology

Loading
LOADING...

Table Information