+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Synthetic Biology Market Report by Product, Technology, Application, and Region 2024-2032

  • PDF Icon

    Report

  • 141 Pages
  • July 2024
  • Region: Global
  • IMARC Group
  • ID: 5615093
The global synthetic biology market size reached US$ 16.0 Billion in 2023. Looking forward, the publisher expects the market to reach US$ 62.0 Billion by 2032, exhibiting a growth rate (CAGR) of 16.2% during 2023-2032. Significant advancements in gene editing technologies, the rising demand for sustainable solutions across industries, collaborative ecosystems, and increasing venture capital investments are some of the major factors propelling the market.

Synthetic Biology Market Analysis:

Major Market Drivers: The global synthetic biology market is experiencing robust growth, driven by increasing improvements in gene editing technologies.

Key Market Trends: Collaborative efforts between academia, industry, and government are enhancing innovation and development capabilities.

Geographical Trends: North America dominates the market owing to the growing investments in biotechnology. However, Asia Pacific is emerging as a fast-growing market due to the increasing research activities and government initiatives in the region.

Competitive Landscape: Key players are investing in research operations to drive innovation and address complex biological challenges. Some of the major market players in the synthetic biology industry include GenScript Biotech Corporation, Amyris Inc., Ginkgo Bioworks, Mammoth Biosciences, Novozymes, Merck KGaA, among many others.

Challenges and Opportunities: Challenges include ethical and safety concerns related to genetically modified products. Nonetheless, opportunities for the market to develop regulatory-compliant, ethically considered innovations are projected to overcome these challenges.

Synthetic Biology Market Trends/Drivers:

Advancements in gene editing technologies

At present, various techniques like CRISPR-Cas9 are capable of improving the field of biology research by enabling precise and efficient manipulation of genetic material, strengthening the synthetic biology market demand. Researchers are designing, editing, and engineering DNA sequences with exceptional accuracy, facilitating the creation of intricate synthetic organisms customized according to specific functions. This innovation is opening new avenues for the development of novel aspects, like disease treatment through gene therapies and creation of bioengineered organisms capable of producing valuable compounds such as enzymes and biofuels, thus aiding in market expansion. Moreover, The World Health Organization (WHO) released groundbreaking recommendations for the global governance of human genome editing, emphasizing safety, efficacy, and ethics.

Demand for sustainable solutions

The rising demand for sustainable and environment-friendly solutions across various industries is propelling the synthetic biology market. Synthetic biology presents various new avenues for sectors to fulfill their demands to reduce the environmental impact of their operations. In line with this, the production of bioplastics extracted from renewable resources and the development of biofuels with reduced carbon emissions aligning with the global push towards sustainability are contributing to the market growth. Apart from this, synthetic biology is capable of creating microbes for bioremediation which is a method to detoxify contaminants or help clean up the environment and address various urgent ecological complications. Furthermore, synthetic biology is revolutionizing the sustainability efforts of the beauty sector. Vogue Business estimates that 20-40% of beauty products become waste annually, and the industry generates 120 billion units of difficult-to-recycle packaging yearly. Moreover, eight out of ten cosmetic ingredients are unsustainably sourced. To address these challenges, synthetic biology modifies microorganism DNA to create sustainable materials. The synthetic biology market price reflects rapid growth due to innovation and diverse applications.

Collaborative ecosystem and investment

The collaborative synergy between academia, industry, and government entities fosters a conducive environment for research operations within the synthetic biology field. Collaborations facilitate the exchange of knowledge, assets, and perspectives, thus quickening the rate of invention. Governing authorities frequently provide grants and funds to assist research endeavors, while established businesses and startups work together to pool resources for ground-breaking ventures that promote market growth. In addition to this, the surge in venture capital investments in biotechnology startups injects vital capital into the field, nurturing the growth of nascent ideas into tangible products and synthetic biology market application. This collaborative ecosystem sustains a cycle of research, innovation, and commercialization, propelling the global synthetic biology market forward.

Additionally, the future of the synthetic biology market promises unparalleled innovation, sustainability solutions, and expansive growth potential. Companies, such as Algal Bio utilize a diverse array of strains to innovate novel solutions, while startups like Basecamp Research employ machine learning (ML) to decipher the design principles of nature for synthetic protein engineering.

Synthetic Biology Industry Segmentation:

The report provides an analysis of the key trends in each segment of the global synthetic biology market report, along with forecasts at the global, regional, and country levels for 2024-2032. Our report has categorized the market based on product, technology, and application.

Breakup by Product:

Oligonucleotide/Oligo Pools and Synthetic DNA
Enzymes
Cloning Technologies Kits
Xeno-nucleic Acids
Chassis Organism

Oligonucleotide/oligo pools and synthetic DNA dominates the market

The report has provided a detailed breakup and analysis of the market based on the product. This includes oligonucleotide/oligo pools and synthetic DNA, enzymes, cloning technologies kits, Xeno-nucleic acids, and chassis organism. According to the report, oligonucleotide/oligo pools and synthetic DNA represented the largest segment.

The growing demand for synthetic biology products, specifically oligonucleotide/oligo pools and synthetic DNA, is mainly fueled by the exponential growth in fields such as personalized medicine, gene therapy, and molecular diagnostics that have amplified the need for precise and customizable genetic materials. Additionally, the rise of synthetic biology startups and the democratization of gene editing technologies have made these products more accessible, empowering researchers across diverse disciplines to engage in innovative projects, thereby creating a favorable synthetic biology market outlook. For example, Synbio Technologies offers oligo pool synthesis for companies or clients who need to mass-produce short DNA strands, also known as oligonucleotides.

Breakup by Technology:

NGS Technology
PCR Technology
Genome Editing Technology
Bioprocessing Technology
Others

A detailed breakup and analysis of the market based on the technology has also been provided in the report. This includes NGS, PCR, genome editing, bioprocessing, and other technologies.

Next-generation sequencing (NGS) technology has become instrumental in deciphering complex biological information, facilitating the analysis of vast genetic data sets, and accelerating the discovery of novel genetic components, which in turn, is presenting lucrative market opportunities. Moreover, polymerase chain reaction (PCR) technology remains a cornerstone for DNA amplification, crucial in generating sufficient genetic material for various applications, from research to diagnostics. Besides this, genome editing technologies, particularly CRISPR-Cas9, hold immense promise for precision genetic modifications, driving advancements in gene therapies and customized genetic engineering. Bioprocessing technologies form a critical facet, enabling efficient large-scale production of bioengineered compounds, ranging from pharmaceuticals to biofuels. Companies are also investing and focusing on these aspects to create novel technologies. For example, Bayer and Mammoth Biosciences collaborated to develop a novel gene editing technology to unlock the full potential of CRISPR systems.

Additionally, the synthetic biology market statistics highlight a robust growth trajectory, driven by advancements in biotechnology and increasing investment in research and development.

Breakup by Application:

Healthcare
Clinical
Non-Clinical/Research
Non-Healthcare
Biotech Crops
Specialty Chemicals
Bio-Fuels
Others

The report has provided a detailed breakup and analysis of the market based on the application. This includes healthcare (clinical and non-clinical/research) and non-healthcare (biotech crops, specialty chemicals, bio-fuels, and others).

The bolstering growth of the healthcare sector, wherein synthetic biology is used in the development of personalized medicines, gene therapies, and diagnostics, is contributing to the synthetic biology market growth. In addition, the numerous non-clinical or research applications of synthetic biology encompassing drug discovery, functional genomics, and biomolecule production, are fueling scientific exploration and market growth. Beyond healthcare, synthetic biology's expanding usage in biotech crops engineered for improved yield and resistance to pests is positively influencing the market. Furthermore, the increasing product adoption across the specialty chemicals industry, wherein bioengineered pathways create sustainable routes to produce high-value compounds is impelling the market growth. Apart from this, the growing use of synthetic biology in the biofuel sector to optimize microorganisms for efficient biofuel production is strengthening the market growth. Key market players are focusing on collaborating with each other to develop various novel technologies in synthetic biology. For instance, scientists led by Gerard Wright at McMaster University developed a synthetic biology platform for novel glycopeptide antibiotics (GPA) discovery. They engineered Streptomyces coelicolor as a chassis for GPA biosynthesis, overcoming challenges in cloning large biosynthetic gene clusters (BGCs) using an optimized transformation-associated recombination (TAR) system. The platform enabled the synthesis of corbomycin and the discovery of novel GPAs, expanding antibiotic candidates' repertoire.

Breakup by Region:

North America
United States
Canada
Asia-Pacific
China
Japan
India
South Korea
Australia
Indonesia
Others
Europe
Germany
France
United Kingdom
Italy
Spain
Russia
Others
Latin America
Brazil
Mexico
Others
Middle East and Africa

North America exhibits a clear dominance, accounting for the largest synthetic biology market share

The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America accounted for the largest market share.

The presence of a well-established research and innovation ecosystem in North America, characterized by leading academic institutions, cutting-edge biotechnology companies, and significant government investments, provides a fertile ground for advancements in synthetic biology. Moreover, the region's emphasis on R&D and technological innovation fosters collaborations that span academia and industry, driving the development of novel applications across sectors including healthcare, agriculture, and energy. In addition to this, the increasing focus on sustainable solutions and the demand for eco-friendly products align with synthetic biology's potential to offer greener alternatives. This, coupled with favorable regulatory frameworks that encourage biotechnology R&D, creates an environment conducive to the expansion of the North American synthetic biology market. In December 2022, the Investment Strategy by the Office of Strategic Capital (OSC) identifies synthetic biology as a priority technology area for private sector investment, aiming to attract capital and foster innovation in this field for national security purposes. The synthetic biology market overview reveals its rapid expansion, driven by innovation, research investment, and diverse applications.

Competitive Landscape:

The global synthetic biology market features a dynamic competitive landscape shaped by a blend of established players and innovative startups. Leading companies, with their significant financial resources and expansive research capabilities, dominate the market by offering a diverse range of synthetic biology products and services and highlighting how big is the synthetic biology market? These companies actively engage in collaborations, strategic partnerships, and mergers to enhance their offerings and expand their market reach. Furthermore, a surge in venture capital investments has catalyzed the emergence of agile startups, injecting fresh ideas and disruptive technologies into the field. The competitive arena is characterized by a focus on innovation, technology integration, and the ability to address diverse market segments, accentuating the evolutionary nature of the global synthetic biology market. On of the key players, Eurofins Genomics Blue Heron, introduced its IVT mRNA Synthesis Service, using cutting-edge technology for rapid and efficient mRNA transcript production. Tailored for various fields including molecular biology and gene therapy, it offers customizable synthesis with quick turnaround times and expert support, benefiting synthetic biology research and applications. According to synthetic biology market recent news, Aanika Biosciences is revolutionizing synthetic biology adoption across industries like food and agriculture through insurance. Their subsidiary, Aanika Insurance Services (AIS), offers cost-effective coverage, encouraging biologic use while ensuring risk mitigation and frequent sampling. Partnering with Western Growers Insurance Services, Aanika aims to expand its reach to farmers, distributors, and retailers.

The report has provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

Agilent Technologies Inc.

Amyris Inc.

Codexis Inc.

Danaher Corporation
Eurofins Scientific
GenScript Biotech Corporation
Illumina Inc.

Merck KGaA
New England Biolabs
Synthego Corporation
Thermo Fisher Scientific Inc.

Twist Bioscience
Viridos Inc.

(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)

Recent Developments:

In May 2023, GenScript Biotech Corporation launched GenTitan™ Gene Fragments synthesis service, a commercial miniature semiconductor platform that utilizes integrated circuits for high-throughput DNA synthesis.

In May 2023, Codexis, Inc. unveiled Enzyme-Catalyzed Oligonucleotide (ECO) Synthesis™ technology, a proprietary new synthesis platform being developed for manufacturing RNA oligonucleotide therapeutics at scale.

In January 2023, Agilent Technologies partnered with Akoya Biosciences to develop multiplex-immunohistochemistry diagnostic solutions for tissue analysis and to commercialize workflow solutions for multiplex assays in the clinical research market.

Key Questions Answered in This Report:

How has the global synthetic biology market performed so far, and how will it perform in the coming years?
What are the drivers, restraints, and opportunities in the global synthetic biology market?
What is the impact of each driver, restraint, and opportunity on the global synthetic biology market?
What are the key regional markets?
Which countries represent the most attractive synthetic biology market?
What is the breakup of the market based on the product?
Which is the most attractive product in the synthetic biology market?
What is the breakup of the market based on technology?
Which is the most attractive technology in the synthetic biology market?
What is the breakup of the market based on the application?
Which is the most attractive application in the synthetic biology market?
What is the competitive structure of the global synthetic biology market?
Who are the key players/companies in the global synthetic biology market?

Table of Contents

1 Preface
2 Scope and Methodology
2.1 Objectives of the Study
2.2 Stakeholders
2.3 Data Sources
2.3.1 Primary Sources
2.3.2 Secondary Sources
2.4 Market Estimation
2.4.1 Bottom-Up Approach
2.4.2 Top-Down Approach
2.5 Forecasting Methodology
3 Executive Summary
4 Introduction
4.1 Overview
4.2 Key Industry Trends
5 Global Synthetic Biology Market
5.1 Market Overview
5.2 Market Performance
5.3 Impact of COVID-19
5.4 Market Forecast
6 Market Breakup by Product
6.1 Oligonucleotide/Oligo Pools and Synthetic DNA
6.1.1 Market Trends
6.1.2 Market Forecast
6.2 Enzymes
6.2.1 Market Trends
6.2.2 Market Forecast
6.3 Cloning Technologies Kits
6.3.1 Market Trends
6.3.2 Market Forecast
6.4 Xeno-nucleic Acids
6.4.1 Market Trends
6.4.2 Market Forecast
6.5 Chassis Organism
6.5.1 Market Trends
6.5.2 Market Forecast
7 Market Breakup by Technology
7.1 NGS Technology
7.1.1 Market Trends
7.1.2 Market Forecast
7.2 PCR Technology
7.2.1 Market Trends
7.2.2 Market Forecast
7.3 Genome Editing Technology
7.3.1 Market Trends
7.3.2 Market Forecast
7.4 Bioprocessing Technology
7.4.1 Market Trends
7.4.2 Market Forecast
7.5 Others
7.5.1 Market Trends
7.5.2 Market Forecast
8 Market Breakup by Application
8.1 Healthcare
8.1.1 Market Trends
8.1.2 Key Segments
8.1.2.1 Clinical
8.1.2.2 Non-Clinical/Research
8.1.3 Market Forecast
8.2 Non-Healthcare
8.2.1 Market Trends
8.2.2 Key Segments
8.2.2.1 Biotech Crops
8.2.2.2 Specialty Chemicals
8.2.2.3 Bio-Fuels
8.2.2.4 Others
8.2.3 Market Forecast
9 Market Breakup by Region
9.1 North America
9.1.1 United States
9.1.1.1 Market Trends
9.1.1.2 Market Forecast
9.1.2 Canada
9.1.2.1 Market Trends
9.1.2.2 Market Forecast
9.2 Asia-Pacific
9.2.1 China
9.2.1.1 Market Trends
9.2.1.2 Market Forecast
9.2.2 Japan
9.2.2.1 Market Trends
9.2.2.2 Market Forecast
9.2.3 India
9.2.3.1 Market Trends
9.2.3.2 Market Forecast
9.2.4 South Korea
9.2.4.1 Market Trends
9.2.4.2 Market Forecast
9.2.5 Australia
9.2.5.1 Market Trends
9.2.5.2 Market Forecast
9.2.6 Indonesia
9.2.6.1 Market Trends
9.2.6.2 Market Forecast
9.2.7 Others
9.2.7.1 Market Trends
9.2.7.2 Market Forecast
9.3 Europe
9.3.1 Germany
9.3.1.1 Market Trends
9.3.1.2 Market Forecast
9.3.2 France
9.3.2.1 Market Trends
9.3.2.2 Market Forecast
9.3.3 United Kingdom
9.3.3.1 Market Trends
9.3.3.2 Market Forecast
9.3.4 Italy
9.3.4.1 Market Trends
9.3.4.2 Market Forecast
9.3.5 Spain
9.3.5.1 Market Trends
9.3.5.2 Market Forecast
9.3.6 Russia
9.3.6.1 Market Trends
9.3.6.2 Market Forecast
9.3.7 Others
9.3.7.1 Market Trends
9.3.7.2 Market Forecast
9.4 Latin America
9.4.1 Brazil
9.4.1.1 Market Trends
9.4.1.2 Market Forecast
9.4.2 Mexico
9.4.2.1 Market Trends
9.4.2.2 Market Forecast
9.4.3 Others
9.4.3.1 Market Trends
9.4.3.2 Market Forecast
9.5 Middle East and Africa
9.5.1 Market Trends
9.5.2 Market Breakup by Country
9.5.3 Market Forecast
10 SWOT Analysis
10.1 Overview
10.2 Strengths
10.3 Weaknesses
10.4 Opportunities
10.5 Threats
11 Value Chain Analysis
12 Porters Five Forces Analysis
12.1 Overview
12.2 Bargaining Power of Buyers
12.3 Bargaining Power of Suppliers
12.4 Degree of Competition
12.5 Threat of New Entrants
12.6 Threat of Substitutes
13 Price Analysis
14 Competitive Landscape
14.1 Market Structure
14.2 Key Players
14.3 Profiles of Key Players
14.3.1 Agilent Technologies Inc.
14.3.1.1 Company Overview
14.3.1.2 Product Portfolio
14.3.1.3 Financials
14.3.1.4 SWOT Analysis
14.3.2 Amyris Inc.
14.3.2.1 Company Overview
14.3.2.2 Product Portfolio
14.3.2.3 Financials
14.3.3 Codexis Inc.
14.3.3.1 Company Overview
14.3.3.2 Product Portfolio
14.3.3.3 Financials
14.3.3.4 SWOT Analysis
14.3.4 Danaher Corporation
14.3.4.1 Company Overview
14.3.4.2 Product Portfolio
14.3.4.3 Financials
14.3.5 Eurofins Scientific
14.3.5.1 Company Overview
14.3.5.2 Product Portfolio
14.3.5.3 Financials
14.3.5.4 SWOT Analysis
14.3.6 GenScript Biotech Corporation
14.3.6.1 Company Overview
14.3.6.2 Product Portfolio
14.3.7 Illumina Inc.
14.3.7.1 Company Overview
14.3.7.2 Product Portfolio
14.3.7.3 Financials
14.3.7.4 SWOT Analysis
14.3.8 Merck KGaA
14.3.8.1 Company Overview
14.3.8.2 Product Portfolio
14.3.8.3 Financials
14.3.9 New England Biolabs
14.3.9.1 Company Overview
14.3.9.2 Product Portfolio
14.3.10 Synthego Corporation
14.3.10.1 Company Overview
14.3.10.2 Product Portfolio
14.3.11 Thermo Fisher Scientific Inc.
14.3.11.1 Company Overview
14.3.11.2 Product Portfolio
14.3.11.3 Financials
14.3.11.4 SWOT Analysis
14.3.12 Twist Bioscience
14.3.12.1 Company Overview
14.3.12.2 Product Portfolio
14.3.12.3 Financials
14.3.13 Viridos Inc.
14.3.13.1 Company Overview
14.3.13.2 Product Portfolio
List of Figures
Figure 1: Global: Synthetic Biology Market: Major Drivers and Challenges
Figure 2: Global: Synthetic Biology Market: Sales Value (in Billion US$), 2018-2023
Figure 3: Global: Synthetic Biology Market Forecast: Sales Value (in Billion US$), 2024-2032
Figure 4: Global: Synthetic Biology Market: Breakup by Product (in %), 2023
Figure 5: Global: Synthetic Biology Market: Breakup by Technology (in %), 2023
Figure 6: Global: Synthetic Biology Market: Breakup by Application (in %), 2023
Figure 7: Global: Synthetic Biology Market: Breakup by Region (in %), 2023
Figure 8: Global: Synthetic Biology (Oligonucleotide/Oligo Pools and Synthetic DNA) Market: Sales Value (in Million US$), 2018 & 2023
Figure 9: Global: Synthetic Biology (Oligonucleotide/Oligo Pools and Synthetic DNA) Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 10: Global: Synthetic Biology (Enzymes) Market: Sales Value (in Million US$), 2018 & 2023
Figure 11: Global: Synthetic Biology (Enzymes) Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 12: Global: Synthetic Biology (Cloning Technologies Kits) Market: Sales Value (in Million US$), 2018 & 2023
Figure 13: Global: Synthetic Biology (Cloning Technologies Kits) Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 14: Global: Synthetic Biology (Xeno-nucleic Acids) Market: Sales Value (in Million US$), 2018 & 2023
Figure 15: Global: Synthetic Biology (Xeno-nucleic Acids) Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 16: Global: Synthetic Biology (Chassis Organism) Market: Sales Value (in Million US$), 2018 & 2023
Figure 17: Global: Synthetic Biology (Chassis Organism) Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 18: Global: Synthetic Biology (NGS Technology) Market: Sales Value (in Million US$), 2018 & 2023
Figure 19: Global: Synthetic Biology (NGS Technology) Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 20: Global: Synthetic Biology (PCR Technology) Market: Sales Value (in Million US$), 2018 & 2023
Figure 21: Global: Synthetic Biology (PCR Technology) Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 22: Global: Synthetic Biology (Genome Editing Technology) Market: Sales Value (in Million US$), 2018 & 2023
Figure 23: Global: Synthetic Biology (Genome Editing Technology) Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 24: Global: Synthetic Biology (Bioprocessing Technology) Market: Sales Value (in Million US$), 2018 & 2023
Figure 25: Global: Synthetic Biology (Bioprocessing Technology) Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 26: Global: Synthetic Biology (Other Technologies) Market: Sales Value (in Million US$), 2018 & 2023
Figure 27: Global: Synthetic Biology (Other Technologies) Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 28: Global: Synthetic Biology (Healthcare) Market: Sales Value (in Million US$), 2018 & 2023
Figure 29: Global: Synthetic Biology (Healthcare) Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 30: Global: Synthetic Biology (Non-Healthcare) Market: Sales Value (in Million US$), 2018 & 2023
Figure 31: Global: Synthetic Biology (Non-Healthcare) Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 32: North America: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 33: North America: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 34: United States: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 35: United States: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 36: Canada: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 37: Canada: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 38: Asia-Pacific: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 39: Asia-Pacific: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 40: China: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 41: China: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 42: Japan: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 43: Japan: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 44: India: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 45: India: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 46: South Korea: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 47: South Korea: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 48: Australia: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 49: Australia: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 50: Indonesia: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 51: Indonesia: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 52: Others: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 53: Others: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 54: Europe: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 55: Europe: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 56: Germany: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 57: Germany: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 58: France: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 59: France: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 60: United Kingdom: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 61: United Kingdom: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 62: Italy: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 63: Italy: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 64: Spain: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 65: Spain: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 66: Russia: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 67: Russia: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 68: Others: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 69: Others: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 70: Latin America: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 71: Latin America: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 72: Brazil: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 73: Brazil: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 74: Mexico: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 75: Mexico: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 76: Others: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 77: Others: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 78: Middle East and Africa: Synthetic Biology Market: Sales Value (in Million US$), 2018 & 2023
Figure 79: Middle East and Africa: Synthetic Biology Market: Breakup by Country (in %), 2023
Figure 80: Middle East and Africa: Synthetic Biology Market Forecast: Sales Value (in Million US$), 2024-2032
Figure 81: Global: Synthetic Biology Industry: SWOT Analysis
Figure 82: Global: Synthetic Biology Industry: Value Chain Analysis
Figure 83: Global: Synthetic Biology Industry: Porter's Five Forces Analysis
List of Tables
Table 1: Global: Synthetic Biology Market: Key Industry Highlights, 2023 and 2032
Table 2: Global: Synthetic Biology Market Forecast: Breakup by Product (in Million US$), 2024-2032
Table 3: Global: Synthetic Biology Market Forecast: Breakup by Technology (in Million US$), 2024-2032
Table 4: Global: Synthetic Biology Market Forecast: Breakup by Application (in Million US$), 2024-2032
Table 5: Global: Synthetic Biology Market Forecast: Breakup by Region (in Million US$), 2024-2032
Table 6: Global: Synthetic Biology Market: Competitive Structure
Table 7: Global: Synthetic Biology Market: Key Players

Companies Mentioned

  • Agilent Technologies Inc.
  • Amyris Inc.
  • Codexis Inc.
  • Danaher Corporation
  • Eurofins Scientific
  • GenScript Biotech Corporation
  • Illumina Inc.
  • Merck KGaA
  • New England Biolabs
  • Synthego Corporation
  • Thermo Fisher Scientific Inc.
  • Twist Bioscience
  • Viridos Inc

Methodology

Loading
LOADING...

Table Information