Plant phenotyping is rapidly developing technology that involves the quantitative analysis of structural and functional plant traits. It is widely recognised that phenotyping needs to match similar advances in genetics if it is to not create a bottleneck in plant breeding.
Advances in plant phenotyping for more sustainable crop production reviews the wealth of research on advances in plant phenotyping to meet this challenge, including new technologies such as optical and thermographic sensors, as well as alternative carrier systems such as field robots and unmanned aerial vehicles (UAVs). The book details the use of plant phenotyping to analyse traits such as crop root functionality, yield performance and disease resistance. Edited by a world-renowned researcher in plant science, Advances in plant phenotyping for more sustainable crop production will be a standard reference for university and other researchers in plant science, as well as those in computing and engineering science with a research focus on computer vision, data mining and image-based plant phenotyping. The book will also be a key resource for plant breeders, government and private agencies involved in advocating for a more sustainable agriculture, agricultural engineers, as well as suppliers of agricultural technology.
Audience: University and other researchers in plant science, as well as those in computer and engineering science with a research focus on computer vision, data mining and image-based plant phenotyping; plant breeders, government and private agencies involved in advocating for a more sustainable agriculture, agricultural engineers, as well as suppliers of agricultural technology.
Advances in plant phenotyping for more sustainable crop production reviews the wealth of research on advances in plant phenotyping to meet this challenge, including new technologies such as optical and thermographic sensors, as well as alternative carrier systems such as field robots and unmanned aerial vehicles (UAVs). The book details the use of plant phenotyping to analyse traits such as crop root functionality, yield performance and disease resistance. Edited by a world-renowned researcher in plant science, Advances in plant phenotyping for more sustainable crop production will be a standard reference for university and other researchers in plant science, as well as those in computing and engineering science with a research focus on computer vision, data mining and image-based plant phenotyping. The book will also be a key resource for plant breeders, government and private agencies involved in advocating for a more sustainable agriculture, agricultural engineers, as well as suppliers of agricultural technology.
Audience: University and other researchers in plant science, as well as those in computer and engineering science with a research focus on computer vision, data mining and image-based plant phenotyping; plant breeders, government and private agencies involved in advocating for a more sustainable agriculture, agricultural engineers, as well as suppliers of agricultural technology.
Table of Contents
Part 1 The development of phenotyping as a research field
Part 2 Sensor types
Part 3 Carrier/delivery systems
Part 4 Data analysis
Part 5 Case studies