+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Distributed Temperature Sensing Market - Forecasts from 2023 to 2028

  • PDF Icon

    Report

  • 140 Pages
  • May 2023
  • Region: Global
  • Knowledge Sourcing Intelligence LLP
  • ID: 5794042

The distributed temperature sensing market is projected to grow at a CAGR of 7.74% to reach US$1,159.817 million in 2028 from US$688.176 million in 2021.

Distributed temperature sensing (DTS) is a technology for measuring temperature along a fiber optic cable. It is often used in industries such as oil and gas, power, and transportation to monitor and manage temperature variations in critical infrastructure by installing a fiber optic cable along the length of the infrastructure being monitored, such as a pipeline or power cable, and connecting the cable to a DTS unit that sends pulses of light through the cable that interact with the cable's structure and the surrounding environment to produce a signal that is used to calculate the temperature at each point along the cable's length.

Adopting DTS in business applications allows companies to monitor temperature continuously and in real-time, identify potential problems before they become critical, and optimize performance by adjusting heating or cooling systems based on actual temperature data. It can also help companies to reduce costs, increase efficiency, and improve safety by detecting hotspots and abnormal temperature changes. The expansion of the oil and gas industry and the growing need for temperature monitoring solutions among manufacturing industries is anticipated to drive the growth of the market over the forecast period.

Market Drivers:

The need for monitoring railway track temperature

The growing importance of railway track temperature monitor to ensure safe and efficient railway operations by preventing the occurrence of several issues, such as train buckling, rail breaks, speed restrictions, and increased maintenance costs, is expected to increase the consumption of DTS. For instance, AP Sensing company offers DTS technology to continuously administer the railway track temperature, which further facilitates the detection of fires in the interior of metro stations, trains, and cable ducts. High temperatures can cause steel tracks to expand and lead to train buckling and track warping, which cause derailments and accidents by endangering passengers and damaging equipment. For instance, in July 2022, trains were canceled at the King's Cross railway station by the UK railway to prevent buckling due to a high temperature of 104.36 degrees Fahrenheit.

Expansion of infrastructure development activities

The increasing development of civil infrastructure and other buildings provides an opportunity for the consumption of DTS technology to monitor building temperatures. For instance, a zero-deficit federal budget of AED 61.35 billion has been approved as part of the UAE's fiscal year 2020 budget, with 14.00% allocated towards construction and economic growth. DTS technology is implemented to monitor the temperature of buildings to optimize heating and cooling systems and reduce energy consumption. For example, the Association of District Cooling Operators in Dubai revealed in April 2021 that using the district cooling system, a DTS product offered by Emirates District Cooling Company in the UAE, resulted in electricity savings of close to 650 GWh in 2020.

The limited awareness of DTS and substitute technologies are some of the key challenges.

The limited awareness of the benefits of DTS technology and the incomplete understanding of its ability to improve business operations is resulting in the slow adoption of DTS products by companies operating in industries that have not yet commenced consuming DTS. Further, the growing competition by alternative technologies such as infrared imaging or wireless sensors limits the demand for DTS technology in certain applications due to their relative cost-effectiveness and easier implementation.

Market Developments:

In March 2022, LIOS Sensing, a company specializing in the production of distributed temperature sensing solutions, was acquired by Luna Innovations Incorporated, a US-based communication company offering optical technology products to expand the fiber optic product offerings by Luna.

In April 2020, Sumitomo Electric Industries, Ltd., a Japanese company manufacturing fiber optic solutions, introduced a new distributed temperature sensing product, OPTHERMO FTS3500, that uses optic fiber to enhance the performance of interval sampling, compact the housing size, and increase compatibility with the interface.

By technology, the Optical Time Domain Reflectometer (OTDR) segment is anticipated to hold a prominent share of the distributed temperature sensing market.

OTDRs are mainly employed to measure the loss of optical power in fiber optic cables over distance. They use a high-power laser to generate pulses of light transmitted through the fiber to enable the OTDR to measure the response time taken for the reflected light to return to the device, which provides information about the attenuation and location of any breaks or splices in the fiber. The growing consumption of fiber optic cables is increasing the consumption of OTDRs as they are adopted in applications such as fiber optic cable installation, maintenance, and troubleshooting to provide a comprehensive analysis of the fiber essential for troubleshooting and maintenance.

By application, the oil and gas sector is projected to witness substantial growth over the forecast period.

The expansion of the production activities by the oil and gas sector to meet consumer demand is generating a high for DTS products as this industry relies heavily on critical infrastructure that must operate within strict temperature parameters to ensure safe and efficient performance. DTS technology is used in the oil and gas industry for pipeline monitoring, reservoir monitoring, wellbore monitoring, and hydraulic fracturing. It is prominently consumed to continuously monitor temperature changes along pipelines to detect potential issues such as leaks or hotspots and reduce the risk of pipeline failures and environmental damage.

The increase in gas pipelines is expected to result in the expansion of the DTS market. For instance, Russia initiated a US$2 billion gas pipeline deal with Pakistan and a US$40 billion natural gas export agreement with India. In addition, the annual budget 2021 included a pipeline project announcement from the Indian government for Jammu and Kashmir. The Ministry of Petroleum and Natural Gas of India estimated that roughly 33,764 km of the natural gas pipeline has been approved by the Petroleum and Natural Gas Regulatory Board to build the nation's gas matrix and enhance the accessibility of natural gas throughout India. Moreover, government regulations and mandates in the oil and gas industry, such as regulatory requirements for pipeline monitoring and maintenance, have led to increased adoption of DTS technology.

North America held a significant share of the global market in 2021 and is expected to witness modest growth over the forecast period.

The advancements in fiber optic technology are a significant factor promoting the growth of the DTS market in the region, as such advancements have resulted in the creation of fiber optic cables with enhanced robustness, reliability, and cost-effectiveness, enabling the widespread adoption of DTS technology across various industries. In addition, the growing need for real-time temperature monitoring and analysis to improve operational efficiency and reduce costs among companies is contributing to the expansion of the market in the region as DTS solutions provide continuous, high-resolution temperature data that enable businesses to quickly identify and address issues before critical time to reduce the downtime and maintenance costs.

Market Segmentation:

By Technology

  • Optical Time Domain Reflectometry (OTDR)
  • Optical Frequency Domain Reflectometry (OFDR)

By Application

  • Oil and Gas
  • Power Cable
  • Fire Detection
  • Pipeline Monitoring
  • Others

By Geography

  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Israel
  • Others
  • Asia Pacific
  • China
  • Japan
  • India
  • South Korea
  • Taiwan
  • Indonesia
  • Others

Table of Contents

1. INTRODUCTION
1.1. Market Overview
1.2. Market Definition
1.3. Scope of the Study
1.4. Market Segmentation
1.5. Currency
1.6. Assumptions
1.7. Base, and Forecast Years Timeline
2. RESEARCH METHODOLOGY
2.1. Research Data
2.2. Research Design
3. EXECUTIVE SUMMARY
3.1. Research Highlights
4. MARKET DYNAMICS
4.1. Market Drivers
4.2. Market Restraints
4.3. Porter’s Five Forces Analysis
4.3.1. Bargaining Power of Suppliers
4.3.2. Bargaining Power of Buyers
4.3.3. Threat of New Entrants
4.3.4. Threat of Substitutes
4.3.5. Competitive Rivalry in the Industry
4.4. Industry Value Chain Analysis
5. DISTRIBUTED TEMPERATURE SENSING MARKET BY TECHNOLGY
5.1. Introduction
5.2. Optical Time Domain Reflectometry (OTDR)
5.3. Optical Frequency Domain Reflectometry (OFDR)
6. DISTRIBUTED TEMPERATURE SENSING MARKET BY APPLICATION
6.1. Introduction
6.2. Oil and Gas
6.3. Power Cable
6.4. Fire Detection
6.5. Pipeline Monitoring
6.6. Others
7. DISTRIBUTED TEMPERATURE SENSING MARKET BY GEOGRAPHY
7.1. Introduction
7.2. North America
7.2.1. USA
7.2.2. Canada
7.2.3. Mexico
7.3. South America
7.3.1. Brazil
7.3.2. Argentina
7.3.3. Others
7.4. Europe
7.4.1. Germany
7.4.2. France
7.4.3. United Kingdom
7.4.4. Spain
7.4.5. Others
7.5. Middle East And Africa
7.5.1. Saudi Arabia
7.5.2. UAE
7.5.3. Israel
7.5.4. Others
7.6. Asia Pacific
7.6.1. China
7.6.2. Japan
7.6.3. India
7.6.4. South Korea
7.6.5. Taiwan
7.6.6. Indonesia
7.6.7. Others
8. COMPETITIVE ENVIRONMENT AND ANALYSIS
8.1. Major Players and Strategy Analysis
8.2. Emerging Players and Market Lucrativeness
8.3. Mergers, Acquisitions, Agreements, and Collaborations
8.4. Vendor Competitiveness Matrix
9. COMPANY PROFILES
9.1. AP Sensing
9.2. OPTROMIX
9.3. OFS Fitel, LLC
9.4. Baker Hughes
9.5. Bandweaver
9.6. Yokogawa
9.7. SLB
9.8. Silixa Ltd.
9.9. Sensornet

Companies Mentioned

  • AP Sensing
  • OPTROMIX
  • OFS Fitel, LLC
  • Baker Hughes
  • Bandweaver
  • Yokogawa
  • SLB
  • Silixa Ltd.
  • Sensornet

Methodology

Loading
LOADING...

Table Information