+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Engineering Fluid Mechanics. 12th Edition, International Adaptation

  • Book

  • 608 Pages
  • April 2022
  • Region: Global
  • John Wiley and Sons Ltd
  • ID: 5827681

Engineering Fluid Mechanics, 12th edition, guides students from theory to application, emphasizing skills like critical thinking, problem solving and modeling to apply fluid mechanics concepts to solve real-world engineering problems. The essential concepts are presented in a clear and concise format, while abundant illustrations, charts, diagrams, and examples illustrate complex topics and highlight the physical reality of fluid dynamics applications. The text emphasizes on technical derivations, presenting derivations of main equation in a step-by-step manner and explaining their holistic meaning in words. The Wales-Wood Model is used throughout the text to solve numerous example problems. This International Adaptation comes with some updates that enhance and expand certain concepts and some organizational changes. The edition provides a wide variety of new and updated solved problems, real-world engineering examples, and end-of-chapter homework problems and  has been completely updated to use SI units. The text, though written from civil engineering perspective, adopts an interdisciplinary approach which makes it suitable for engineering students of all majors who are taking a first or second course in fluid mechanics.

Table of Contents

1.  Introduction 

1.1 Engineering Fluid Mechanics 

1.2 Modeling in Fluid Mechanics and Engineering 

1.3 Modeling of Materials 

1.4 Weight, Mass, and Newton’s Law of Gravitation 

1.5 Essential Mathematics Topics 

1.6 Density and Specific Weight 

1.7 The Ideal Gas Law (IGL) 

1.8 Quantity, Units, and Dimensions 

1.9 Problem Solving 

1.10 Summarizing Key Knowledge 

Problems 

 

2.  Fluid Properties 

2.1 System, State, and Property 

2.2 Looking Up Fluid Properties 

2.3 Specific Gravity, Constant Density, and the Bulk Modulus 

2.4 Pressure and Shear Stress 

2.5 The Viscosity Equation 

2.6 Surface Tension and Capillary Action 

2.7 Vapor Pressure, Boiling, and Cavitation 

2.8 Characterizing Thermal Energy in Flowing Gases 

2.9 Summarizing Key Knowledge 

Problems 

 

3. Fluid Statics 

3.1 Describing Pressure 

3.2 The Hydrostatic Equations 

3.3 Measurement of Pressure 

3.4 The Pressure Force on a Panel (Flat Surface) 

3.5 Calculating the Pressure Force on a Curved Surface 

3.6 Calculating Buoyant Forces 

3.7 Predicting Stability of Immersed and Floating Bodies 

3.8 Summarizing Key Knowledge 

Problems 

 

4.  Bernoulli Equation and Pressure Variation 

4.1 Flow Patterns: Streamlines, Streaklines, and Pathlines 

4.2 Characterizing Velocity of a Flowing Fluid 

4.3 Describing Flow 

4.4 Acceleration 

4.5 Applying Euler’s Equation to Understand Pressure Variation 

4.6 The Bernoulli Equation along a Streamline 

4.7 Measuring Velocity and Pressure 

4.8 Characterizing the Rotational Motion of a Flowing Fluid 

4.9 The Bernoulli Equation for Irrotational Flow 

4.10 Describing the Pressure Field for Flow over a Circular Cylinder 

4.10 Elementary Plane potential Flows 

4.11 Calculating the Pressure Field for a Rotating Flow 

4.12 Summarizing Key Knowledge 

Problems 

5. The Control Volume Approach and The Continuity Equation 

5.1 Characterizing the Rate of Flow 

5.2 The Control Volume Approach 

5.3 The Continuity Equation (Theory) 

5.4 The Continuity Equation (Application) 

5.5 Predicting Cavitation 

5.6 Summarizing Key Knowledge 

 

6.  The Momentum Equation 

6.1 Understanding Newton’s Second Law of Motion 

6.2 The Linear Momentum Equation: Theory 

6.3 The Linear Momentum Equation: Application 

6.4 The Linear Momentum Equation for a Stationary Control Volume 

6.5 Examples of the Linear Momentum Equation (Moving Objects) 

6.6 The Angular Momentum Equation 

6.7 Summarizing Key Knowledge 

Problems 

 

7. The Energy Equation 

7.1 Technical Vocabulary: Work, Energy, and Power 

7.2 Conservation of Energy 

7.3 The Energy Equation 

7.4 The Power Equation 

7.5 Mechanical Efficiency 

7.6 Contrasting the Bernoulli Equation and the Energy Equation 

7.7 Transitions 

7.8 The Hydraulic and Energy Grade Lines 

7.9 Summarizing Key Knowledge 

Problems 

 

8. Dimensional Analysis and Similitude 

8.1 The Need for Dimensional Analysis 

8.2 Buckingham ∏ Theorem 

8.3 Dimensional Analysis 

8.4 Common π-Groups 

8.5 Similitude 

8.6 Model Studies for Flows without Free-Surface Effects 

8.7 Model-Prototype Performance 

8.8 Approximate Similitude at High Reynolds Numbers 

8.9 Free-Surface Model Studies 

8.10 Summarizing Key Knowledge 

Problems 

9.  Viscous Flow Over a Flat Surface, Drag and Lift 

9.1 The Navier-Stokes Equation for Uniform Flow 

9.2 Couette Flow 

9.3 Poiseuille Flow in a Channel 

9.4 The Boundary Layer (Description) 

9.5 Velocity Profiles in the Boundary Layer 

9.6 The Boundary Layer (Calculations) 

9.7 Relating Lift and Drag to Stress Distributions  

9.8 Calculating the Drag Force  

9.9 Drag of Axisymmetric and 3-D Bodies 

9.10 Terminal Velocity  

9.11 Vortex Shedding 

9.12 Reducing Drag by Streamlining 

9.13 Drag in Compressible Flow 

9.14 The Theory of Lift 

9.15 Lift and Drag on Airfoils 

9.16 Lift and Drag on Road Vehicles 

9.17 Summarizing Key Knowledge 

Problems 

10. Flow in Conduits 

10.1 Classifying Flow 

10.2 Specifying Pipe Sizes 

10.3 Pipe Head Loss (Major and Minor losses) 

10.4 Stress Distributions in Pipe Flow 

10.5 Laminar Flow in a Circular Pipe 

10.6 Turbulent Flow and the Moody Chart 

10.7 A Strategy for Solving Problems 

10.8 Combined Head Loss 

10.9  Noncircular Conduits 

10.10 Pumps and Systems of Pipes 

10.11 Summarizing Key Knowledge 

Problems 

 

11. Compressible Flow  

11.1 Wave Propagation in Compressible Fluids 

11.2 Mach Number Relationships 

11.3 Normal Shock Waves 

11.4 Isentropic Compressible Flow through a Duct with Varying Area 

11.5 Summarizing Key Knowledge 

Problems 

12.  Flow Measurements  

12.1 Measuring Velocity and Pressure 

12.2 Measuring Flow Rate (Discharge) 

12.3 Summarizing Key Knowledge 

Problems 

 

13.Turbomachinery  

13.1 Propellers 

13.2 Axial-Flow Pumps 

13.3 Radial-Flow Machines 

13.4 Specific Speed 

13.5 Suction Limitations of Pumps 

13.6 Viscous Effects 

13.7 Centrifugal Compressors 

13.8 Positive Displacement Pumps 

13.9 Turbines 

13.10 Summarizing Key Knowledge 

Problems 

 

14. Flow in Open Channels 

14.1 Describing Open-Channel Flow 

14.2 Energy Equation for Steady Open-Channel Flow 

14.3 Steady Uniform Flow 

14.4 Steady Nonuniform Flow 

14.5 Rapidly Varied Flow 

14.6 Hydraulic Jump 

14.7 Gradually Varied Flow 

14.8 Summarizing Key Knowledge 

Problems 

 

15.  Modeling of Fluid Dynamics Problems  

15.1 Models in Fluid Mechanics 

15.2 Foundations for Learning Partial Differential Equations (PDEs) 

15.3 The Continuity Equation 

15.4 The Navier-Stokes Equation 

15.5 Computational Fluid Dynamics (CFD) 

15.6 Examples of CFD 

15.7 A Path for Moving Forward 

15.8 Summarizing Key Knowledge 

Problems 

 

Appendix 

Answers 

Index 

Authors

Donald F. Elger University of Idaho, Moscow. Barbara A. LeBret University of Idaho, Moscow. Clayton T. Crowe Washington State University, Pullman. John A. Roberson Emeritus, Washington State University.