An essential resource with coverage of up-to-date research on sodium-ion battery technology
Lithium-ion batteries form the heart of many of the stored energy devices used by people all across the world. However, global lithium reserves are dwindling, and a new technology is needed to ensure a shortfall in supply does not result in disruptions to our ability to manufacture reliable, efficient batteries.
In Sodium-Ion Batteries: Energy Storage Materials and Technologies, eminent researcher and materials scientist Yan Yu delivers a comprehensive overview of the state-of-the-art in sodium-ion batteries (SIBs), including their design principles, cathode and anode materials, electrolytes, and binders. The author discusses high-performance rechargeable sodium-ion battery technology in the contexts of energy, power density, and electrochemical stability for commercialization.
Exploring a wide range of literature on the recent progress made by researchers on sodium-ion battery technology, the book provides valuable perspectives on designing better materials for SIBs to unlock their practical capabilities. - A thorough introduction to sodium-ion batteries, including their key materials and likely future developments - Comprehensive explorations of design principles of electrode materials and electrolytes for sodium-ion batteries - Practical discussions of cathode materials for sodium-ion batteries, including transition metal oxides, polyanionic compounds, Prussian blue analogues and organic compounds - In-depth examinations of anode materials for sodium-ion batteries, including carbon-based materials, metal chalcogenides, metal alloys, phosphorus and Na metal anodes
Perfect for materials scientists, inorganic chemists, electrochemists, and physical chemists, Sodium-Ion Batteries: Energy Storage Materials and Technologies will also earn a place in the libraries of catalytic and polymer chemists.
Table of Contents
Foreword xiii
Preface xv
1 Introduction to Sodium-Ion Batteries 1
1.1 Brief Outline 1
1.2 Key Materials 4
1.3 Toward Future Development 13
References 14
2 Design Principles for Sodium-Ion Batteries 17
2.1 Introduction 17
2.2 Basic Design Principles 18
2.2.1 Energy Density 18
2.2.2 Power Density 20
2.2.3 Cycling Life 20
2.2.4 Safety 21
2.2.5 Cost 21
2.3 Design Principles for Electrode Materials 22
2.3.1 Transport Properties 22
2.3.2 Size Effects 26
2.3.3 Morphology and Structure 28
2.4 Design Principles for Electrolytes 33
2.4.1 Transport Properties 33
2.4.2 Electrochemical Stability Window 35
2.4.3 Thermal Stability 36
2.4.4 Interfacial Compatibility 37
2.4.5 Safety Issues 37
2.5 Conclusions 38
References 38
3 Transition Metal Oxide Cathodes for Sodium-Ion Batteries 41
3.1 Introduction 41
3.2 Sodium-free Transition Metal Oxides 43
3.2.1 Vanadium Oxides 43
3.2.2 Manganese Dioxides 47
3.3 Sodium-inserted Layered Metal Oxides 48
3.3.1 NaFeO2 51
3.3.2 NaxCoO2 54
3.3.3 NaxMnO2 55
3.3.4 NaxNiO2 61
3.3.5 NaxVO2 65
3.3.6 NaxCrO2 66
3.3.7 Mixed Cation Oxides 69
3.3.8 Other Emerging Metal Oxides 70
3.4 Concluding Remarks 72
References 73
4 Polyanion-Type Cathodes for Sodium-Ion Batteries 79
4.1 Introduction 79
4.2 Phosphates 80
4.2.1 NaMPO4 (M = Fe and Mn) 80
4.2.2 NASICON-Type Phosphates 83
4.2.2.1 NASIClON-type Na3V2(PO4)3 83
4.2.2.2 NASICON-type Na3MnTi(PO4)3 89
4.3 Pyrophosphates 90
4.3.1 NaMP2O7 (M = Fe, V, and Ti) 91
4.3.2 Na2MP2O7 (M = Co, Fe, Mn, Cu, and Zn) 93
4.3.3 Na4M3(PO4)2P2O7 (M = Fe, Co, Mn, Ni, and Mg) 98
4.3.4 Other Pyrophosphates 102
4.4 Fluorinated Phosphate Cathodes 105
4.4.1 NaVPO4F 105
4.4.2 Na2MPO4F (M = Fe, Mn, and Ni) 107
4.4.3 Na3(VO1-xPO4)2F1+2x (0≤ x ≤1) 110
4.5 Sulfates 116
4.5.1 NaxFey(SO4)z 116
4.5.2 Fluorosulfates 119
4.6 Silicates 119
4.7 Other Polyanion-Type Compounds 121
4.8 Concluding Remarks 125
References 126
5 Prussian Blue Analogue Cathodes for Sodium-Ion Batteries 137
5.1 Introduction 137
5.2 Crystal Structure 138
5.3 Electrochemistry Mechanisms 142
5.4 Preparation Approaches 144
5.4.1 Coprecipitation 145
5.4.2 Self-decomposition of Precursors 147
5.5 Optimizing Electrochemical Performance 148
5.5.1 Effect of Lattice Architecture on Electrochemistry 149
5.5.1.1 Substitution of Cation 149
5.5.1.2 Inserting Cation 150
5.5.1.3 Vacancy 151
5.5.1.4 Water Molecules 151
5.5.2 Effect of Morphological Optimizations on Electrochemistry 152
5.5.3 NaxMFe-PBAs with Two Na+ Insertion Sites 154
5.5.4 NaxMFe-PBAs with One Na+ Insertion Sites 155
5.6 Concluding Remarks 156
References 157
6 Organic Cathodes for Sodium-Ion Batteries 161
6.1 Introduction 161
6.2 C=O Reaction 163
6.2.1 Quinones 164
6.2.2 Carboxylates 173
6.2.3 Anhydrides 175
6.2.4 Amides 177
6.3 Doping Reaction 181
6.3.1 Conductive Polymers 182
6.3.2 Organic Radical Compounds 188
6.3.3 Microporous Polymers 192
6.4 C=N Reaction 194
6.4.1 Schiff Base Organic Compounds 194
6.4.2 Pteridine Derivatives 196
6.5 Concluding Remarks 197
References 198
7 Intercalation-Type Anode Materials for Sodium-Ion Batteries 203
7.1 Introduction 203
7.2 Carbon-Based Anode Materials 203
7.2.1 Graphite Anode 204
7.2.2 Hard Carbon Anode 205
7.2.3 Soft Carbon Anode 210
7.3 Titanium-Based Anode Materials 211
7.3.1 TiO2 212
7.3.1.1 Amorphous TiO2 212
7.3.1.2 Anatase TiO2 213
7.3.1.3 TiO2-B 214
7.3.1.4 Rutile TiO2 216
7.3.2 Li4Ti5O12 218
7.3.3 Na2Ti3O7 221
7.3.3.1 Surface Modifications 224
7.3.3.2 Micro-Nano Structure Design 224
7.3.3.3 Self-Supported Electrode Design 225
7.3.3.4 Anion Doping 228
7.3.3.5 Cation Doping 230
7.3.4 NaTi2(PO4)3 231
7.3.4.1 Structure and Properties of NaTi2(PO4)3 231
7.3.4.2 Modification Strategies of NaTi2(PO4)3 232
7.3.5 TiNb2O7 237
7.3.5.1 Structure and Properties of TiNb2O7 237
7.3.5.2 Modification Strategies of TiNb2O7 237
7.4 Concluding Remarks 239
References 239
8 Phosphorus/Phosphide Anodes for Sodium-Ion Batteries on Alloy and Conversion Reactions 245
8.1 Introduction 245
8.2 Phosphorus Anodes 246
8.2.1 Phosphorus Allotropes 246
8.2.2 Na-Storage Mechanism for Phosphorus-Based Materials 249
8.2.2.1 Na-Storage Mechanism for Red Phosphorus 249
8.2.2.2 Na-Storage Mechanism for Black Phosphorus 250
8.2.3 Phosphorus-Based Materials for Na-Ion Batteries 253
8.2.3.1 Red Phosphorus for Na-Ion Batteries 253
8.2.3.2 Black Phosphorus and Phosphorene for Na-Ion Batteries 258
8.3 Metal Phosphide Anodes 261
8.3.1 Na-Storage Mechanism for Metal Phosphides 261
8.3.2 Metal Phosphides for Na-Ion Batteries 262
8.3.2.1 Tin Phosphide Materials 262
8.3.2.2 Cobalt Phosphide Materials 265
8.3.2.3 Iron Phosphide Materials 266
8.3.2.4 Nickel Phosphide Materials 267
8.3.2.5 Copper Phosphide Materials 268
8.4 Concluding Remarks 269
References 270
9 Metal Oxides/Chalcogenides/Alloys for Sodium-Ion Batteries on Alloy and Conversion Reactions 273
9.1 Introduction 273
9.2 Metal Oxides 273
9.2.1 Conversion-type Oxides 273
9.2.2 Conversion-alloy-type Oxides 277
9.3 Metal Chalcogenides 278
9.3.1 Metal Sulfides 278
9.3.1.1 SnS/SnS2 279
9.3.1.2 Sb2S3/Bi2S3 281
9.3.1.3 MoS2/WS2 282
9.3.1.4 FeSx/CoSx/NiSx 283
9.3.1.5 Other Monometal Sulfides Including CuSx/VSx/TiS2 286
9.3.1.6 Bimetallic Sulfides 288
9.3.2 Metal Selenides 290
9.3.2.1 SnSe/SnSe2 291
9.3.2.2 Sb2Se3/Bi2Se3 291
9.3.2.3 MoSe2/WSe2 292
9.3.2.4 FeSex/CoSe2/NiSe2 293
9.3.2.5 Other Monometal Selenides 295
9.3.2.6 Bimetallic Selenides 296
9.3.3 Metal Tellurides 298
9.4 Metal Alloys 299
9.4.1 Tin (Sn) 299
9.4.2 Antimony (Sb) 302
9.4.3 Bismuth (Bi) 304
9.4.4 Intermetallic Compounds 307
References 309
10 Effective Strategies to Restrain Dendrite Growth of Na Metal Anodes 315
10.1 Introduction 315
10.2 Liquid Electrolyte Optimization for Na Metal Anodes 316
10.2.1 Traditional Electrolyte 316
10.2.2 High-concentration Electrolyte 319
10.2.3 Ionic Liquids 322
10.3 Construction of Novel Current Collectors for Na Metal Anodes 323
10.3.1 Metallic Current Collectors 323
10.3.2 Carbon-Based Current Collectors 324
10.3.3 3D Scaffolds/Na Metal 325
10.4 Alloy-Based Na Metal Anodes 327
10.4.1 Alkali-metal Alloys 327
10.4.2 Other Metals/Na Alloys 332
10.5 Conclusions 335
References 335
11 Organic Liquid Electrolytes for Sodium-Ion Batteries 339
11.1 Introduction 339
11.2 Electrolyte Properties 339
11.3 Sodium Salts 340
11.4 Solvents 346
11.4.1 Carbonate Ester-Based Electrolytes 346
11.4.2 Carboxylate Ester-Based Electrolytes 347
11.4.3 Ether-Based Electrolytes 352
11.5 Functional Additives 358
11.5.1 Basic Characteristics of Additives 358
11.5.2 Additives for Na-Ion Batteries 359
11.5.2.1 SEI-Forming Additives for Anodes 360
11.5.2.2 CEI-Forming Additives for Cathodes 363
11.5.3 Additives for Na Metal 365
11.5.4 Safety Inspired Additives 369
11.6 Novel Concentration Electrolyte Systems 372
11.6.1 High-Concentration Electrolytes 372
11.6.2 Local High-Concentration Electrolytes 373
11.6.3 Low-Concentration Electrolytes 376
11.7 Concluding Remarks 377
References 378
12 Ionic Liquid Electrolytes for Sodium-Ion Batteries 383
12.1 Introduction 383
12.2 The Cationic Species in Ionic Liquids 384
12.3 The Anionic Species in Ionic Liquids 385
12.4 Electrolyte Properties 388
12.4.1 Physicochemical Properties 388
12.4.2 Electrochemical Properties 389
12.4.3 Thermal Properties 391
12.5 Stability of Ionic Liquids 392
12.5.1 Thermal and Electrochemical Stability 392
12.5.2 Electrochemical Properties 393
12.5.3 Electrolyte/Electrode Interfaces 396
12.6 Concluding Remarks 398
References 399
13 Solid-State and Gel Electrolytes for Sodium-Ion Batteries 401
13.1 Introduction 401
13.2 Electrolyte Characteristics 401
13.2.1 Energy Density 401
13.2.2 Ionic Conductivity 403
13.2.3 Chemical Stability 404
13.2.4 Mechanical Stability 406
13.2.5 Thermal Stability 406
13.3 Polymer Electrolytes 406
13.3.1 Solid Polymer Electrolytes (SPEs) 406
13.3.1.1 PEO-Based Electrolyte 407
13.3.1.2 PVA-Based Electrolyte 411
13.3.1.3 PAN-Based Electrolyte 414
13.3.1.4 PVP-Based Electrolyte 414
13.3.1.5 PVDF-Based Electrolyte 414
13.3.2 Na Polymer Single-Ion Conductors 415
13.3.3 Adding Ceramic Additives to Polymer Electrolytes 417
13.3.4 Gel Polymer Electrolytes (GPEs) 420
13.3.4.1 PMMA-Based GPE 420
13.3.4.2 PVDF-Based GPE 421
13.3.4.3 Nafion-Based GPE 424
13.3.5 Adding Ceramic Filler to GPEs 424
13.3.6 Cross-linked GPEs 425
13.3.7 Ionic Liquid-Based GPEs 425
13.4 Inorganic Solid-State Electrolytes 427
13.4.1 Oxide-Based Solid-State Electrolytes 427
13.4.1.1 Beta-Alumina 427
13.4.1.2 NASICON 429
13.4.2 Sulfide-Based Solid-State Electrolytes 433
13.4.2.1 Na3PS4 433
13.4.2.2 Na3SbS4 439
13.4.2.3 Na10SnP2S12 440
13.4.3 Complex Hydrides 441
13.5 Concluding Remarks 443
References 444
14 Binders for Sodium-Ion Batteries 449
14.1 Introduction 449
14.2 Main Functions and Performance Requirements of Binders 450
14.3 Polyvinylidene Fluoride (PVDF) 453
14.3.1 Chemical Properties of PVDF 453
14.3.2 Application of PVDF in Na-Ion Batteries 454
14.4 Polyacrylic Acid (PAA) 455
14.5 Carboxymethyl Cellulose (CMC) 458
14.6 Styrene Butadiene Rubber (SBR) 461
14.7 Other Binders 462
14.7.1 Sodium Alginate (SA) 462
14.7.2 Xanthan Gum (XG) 463
14.7.3 Guar Gum (GG) 463
14.7.4 Polyimide (PI) 463
14.8 Concluding Remarks 464
References 464
15 Sodium-Ion Full Batteries 467
15.1 Introduction 467
15.2 Aqueous Sodium-Ion Full Batteries 468
15.3 Nonaqueous Sodium-Ion Full Batteries 482
15.3.1 Carbon-Anode-based Sodium-Ion Full Batteries 483
15.3.2 Non-Carbon-Anode-based Sodium-Ion Full Batteries 486
15.4 Solid-state Sodium-Ion Full Batteries 493
15.4.1 Quasi-Solid-State Sodium-Ion Full Batteries 493
15.4.2 All-Solid-state Sodium-Ion Full Batteries (ASSSIFBs) 498
15.4.2.1 Polymer-Electrolyte-based ASSSIFBs 498
15.4.2.2 Ceramic-Electrolyte-based ASSSIFBs 498
15.4.2.3 Composite-Electrolyte-based ASSSIFBs 503
15.4.2.4 New Types of ASSSIFBs 504
References 506
16 Perspectives for Sodium-Ion Batteries 509
Index 519