Discover the latest advancements in energy conversion technologies used to develop modern sustainable energy techniques
In Atomic and Nano Scale Materials for Advanced Energy Conversion, expert interdisciplinary researcher Dr. Zongyou Yin delivers a comprehensive overview of nano-to-atomic scale materials science, the development of advanced electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion strategies, and the applications for sustainable water splitting and other technologies.
The book offers readers cutting-edge information of two-dimensional nano, mixed-dimensional nano, nano rare earth, clusters, and single atoms. It constructively evaluates emerging nano-to-atomic scale energy conversion technologies for academic research and development (R&D) researchers and industrial technique consultants and engineers.
The author sets out a systematic analysis of recent energy-conversion science, covering topics like adaptable manufacturing of Van der Waals heterojunctions, mixed-dimensional junctions, tandem structures, and superlattices. He also discusses function-oriented engineering in polymorphic phases, photon absorption, excitons-charges conversion, non-noble plasmonics, and solid-liquid-gas interactions.
Readers will also benefit from: - A thorough introduction to emerging nanomaterials for energy conversion, including electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion - An exploration of clusters for energy conversion, including electrochemical, photochemical, and photoelectrochemical clusters - Practical discussions of single atoms for energy conversion in electrochemical, photochemical, and photoelectrochemical energy conversion technologies - A thorough analysis of future perspectives and directions in advanced energy conversion technology
Perfect for materials scientists, photochemists, electrochemists, and inorganic chemists, Atomic and Nano Scale Materials for Advanced Energy Conversion is also a must-read resource for catalytic chemists interested in the intersection of advanced chemistry and physics in energy conversion technologies.
Table of Contents
Volume 1
1 Introduction 1
Zongyou Yin
Part I Emerging Nanomaterials for Electrochemical (EC) Energy Conversion 3
2 2D-Materials-Free Heterostructures for EC Energy Conversion 5
Kamran Dastafkan and Chuan Zhao
2.1 Heterostructures for Electrochemical Water Splitting 5
2.2 Heterostructures for Electrochemical CO2 Reduction Reaction 24
2.3 Heterostructures for Electrochemical N2 Reduction Reaction 38
2.4 Challenges and Future Opportunities 43
References 45
3 2D-Materials-Based Heterostructures for EC Energy Conversion 53
Zhengqing Liu
3.1 Advances of 2D Materials-Based Heterostructures 53
3.2 Water Splitting 54
3.3 CO2 Reduction Reaction (CRR) 103
3.4 N2 Reduction Reaction (NRR) 109
3.5 Challenge and Opportunity 117
References 118
4 Superlattices for EC Energy Conversion 129
Hang Yin and Zongyou Yin
4.1 EC Water Splitting 129
4.2 EC CO2 Reduction Reaction (CRR) 143
4.3 Challenge and Opportunity 145
References 145
5 Polymorphic Phase Engineered Structures (PPESs) for EC Energy Conversion 147
Nasir Uddin, Ziyang Lu, and Zongyou Yin
5.1 Introduction 147
5.2 PPES for EC Water Splitting 148
5.3 PPES for EC N2 Reduction Reaction (NRR) 160
5.4 Challenge and Opportunity 166
References 167
6 Rare-earth Nanomaterials for EC Energy Conversion 171
Tong Wu, Mingzi Sun, Bolong Huang, and Yaping Du
6.1 Rare Earth Nanomaterials for EC Reactions 171
6.2 Challenge and Opportunity 187
References 188
Part II Emerging Nanomaterials for Photochemical (PC) Energy Conversion 191
7 2D-Materials Free Heterostructures for photochemical Energy Conversion 193
Wei Chen and Guohua Jia
7.1 2D-Materials Free Heterostructures 193
References 222
8 Van der Waals Heterostructures in Photocatalytic Energy Conversion 225
Bikesh Gupta, Han Li, Julie Tournet, Hark H. Tan, Chennupati Jagadish,Shaowen Cao, and Siva K. Karuturi
8.1 Introduction 225
8.2 Fabrication of 2D/2D Heterostructures 226
8.3 2D/2D Heterostructures for Photocatalytic Redox Reactions 236
8.4 Mixed-Dimensional Heterostructures for Photocatalytic Redox Reaction 249
8.5 Challenges and Perspectives 260
Acknowledgments 262
References 262
9 Superlattices for PC Energy Conversion 275
Hang Yin and Zongyou Yin
9.1 PC Water Splitting 275
9.2 Challenge and Opportunity 282
References 282
10 Polymorphic Phase Engineered Structures (PPESs) for PC Energy Conversion 285
Nasir Uddin, Ziyang Lu, and Zongyou Yin
10.1 PPES for PC Water Splitting 285
10.2 PPES for PC CO2 Reduction Reaction (CRR) 294
10.3 PPES for PC N2 Reduction Reaction (NRR) 300
10.4 Challenge and Opportunity 303
References 304
11 Rare-earth Nanomaterials for PC Energy Conversion 309
Tong Wu, Mingzi Sun, Bolong Huang, and Yaping Du
11.1 Complex Oxides 309
11.2 Ce-Based Photocatalysts 317
11.3 Challenge and Opportunity 321
References 321
12 Non-noble Plasmonic Enhancement (NNPE) for PC Energy Conversion 325
Chao Yang and Shaowen Cao
12.1 Introduction 325
12.2 NNPE Water Splitting 326
12.3 NNPE CO2 Reduction Reaction (CRR) 331
12.4 NNPE N2 Reduction Reaction (NRR) 335
12.5 Challenge and Opportunity 337
References 338
Part III Emerging Nanomaterials for Photoelectrochemical (PEC) Energy Conversion 341
13 2D Materials-Free Heterostructures for PEC Energy Conversion 343
Wei Chen and Guohua Jia
13.1 2D Materials-Free Heterostructures 343
References 359
14 2D-Materials-based Heterostructures for PEC Energy Conversion 361
Bikesh Gupta, Julie Tournet, Hark H. Tan, Chennupati Jagadish, and Siva K. Karuturi
14.1 Introduction 361
14.2 Roles of 2D Materials in Photoelectrochemical Systems 365
14.3 Heterostructure Band Energetics at the Interface 367
14.4 2D Materials Heterostructures for Photoelectrocatalytic Redox Reactions 369
14.5 Challenges and Outlook 380
Acknowledgments 380
References 381
15 Polymorphic Phase Engineered Structures (PPES) for PEC Energy Conversion 389
Nasir Uddin and Zongyou Yin
15.1 Photoelectrochemical (PEC) Energy Conversion 389
15.2 PPES for PEC Overall Water Splitting (OWS) 389
15.3 PPES for PEC Nitrogen Reduction Reaction 394
15.4 Challenge and Opportunity 396
References 397
16 Rare-earth Nanomaterials for PEC Energy Conversion 399
Tong Wu, Mingzi Sun, Bolong Huang, and Yaping Du
16.1 Complex Oxides 399
16.2 Ce-Based Photoelectrocatalysts 404
16.3 Challenge and Opportunity 409
References 409
17 Non-Noble Plasmon Enhancement (NNPE) for PEC Energy Conversion 411
Sandra Saji and Zongyou Yin
17.1 NNPE for Water Splitting 411
17.2 Challenge and Opportunity 426
References 427
Volume 2
Part IV Emerging Nanomaterials for Photovoltaic (PV) Energy Conversion 429
18 2D-Materials Free Heterostructures for Photovoltaic Energy Conversion 431
Wei Chen and Guohua Jia
18.1 2D-Materials Free Heterostructures for Solar Cell 432
References 447
19 2D-Materials-based Heterostructures for PV Energy Conversion 449
Chun H. Mak, Jung-Ho Yun, Hoi Y. Chung, Yun H. Ng, and Hsien-Yi Hsu
19.1 Introduction to Heterostructured Perovskite Solar Cells 449
19.2 Quantum Dot Solar Cells 455
19.3 Dye-Sensitized Solar Cells (DSSCs) 461
19.4 Challenge and Opportunity 473
References 474
20 Perovskite-Si Tandem Solar Cells 481
Disheng Yao and Hongxia Wang
20.1 Introduction 481
20.2 Perovskite Materials and Solar Cells 484
20.3 Tandem Structure of Solar Cells 501
20.4 Heterojunctions of Tandem Solar Cells 507
20.5 Challenge and Opportunity 520
References 523
21 III-V Compound Semiconductor Nanowire Solar Cells 531
Ziyuan Li, Hark H. Tan, Chennupati Jagadish, and Lan Fu
21.1 Introduction 531
21.2 Nanowire Synthesis 532
21.3 Nanowire Design for Optimal Light Absorption 536
21.4 Nanowire p-n Junction Design and Characterization 541
21.5 Surface Passivation 544
21.6 New Concepts and Designs 545
21.7 Performance Comparison and Future Perspectives 547
21.8 Conclusions 553
Acknowledgments 553
References 553
22 Rare-Earth Nanomaterials for PV Energy Conversion 559
Tong Wu, Mingzi Sun, Bolong Huang, and Yaping Du
22.1 Upconversion Phosphors 559
22.2 Downconversion Phosphors 569
22.3 Challenge and Opportunity 575
References 576
23 Non-noble Plasmon Enhancement (NNPE) for PV Energy Conversion 581
Jung-Ho Yun, Chun Hong Mak, Hsien-Yi Hsu, and Yun Hau Ng
23.1 Perovskite Solar Cells 581
23.2 Quantum Dot Solar Cells 587
23.3 Dye-Sensitized Solar Cells 589
References 604
Part V Clusters for Energy Conversion 611
24 Electrochemical Energy Conversion with Clusters 613
Zhengqing Liu, Sandra E. Saji, and Zongyou Yin
24.1 Advances of 2D Cluster-Based Electrocatalysts 613
24.2 Clusters for EC Water Splitting 613
24.3 Clusters for EC CO2 Reduction Reaction 644
24.4 Clusters for Electrochemical N2 Reduction Reaction (NRR) 648
24.5 Challenge and Opportunity 650
References 651
25 Photochemical Energy Conversion with Clusters 655
Xiaoshan Zhang, Sandra E. Saji, and Zongyou Yin
25.1 Clusters for PC Water Splitting 659
25.2 Clusters for PC CO2 Reduction Reaction 676
25.3 Clusters for Photochemical N2 Reduction Reaction (NRR) 685
25.4 Challenge and Opportunity 687
References 689
26 Photoelectrochemical Energy Conversion with Clusters 695
Kaili Liu and Zongyou Yin
26.1 Introduction 695
26.2 Clusters for PEC Water Splitting 697
26.3 Clusters for PEC CO2 Reduction Reaction 708
26.4 Challenge and Opportunity 712
References 714
Part VI Single Atoms for Energy Conversion 719
27 Electrochemical Energy Conversion with Single Atoms 721
Peilong Lu, Sandra E. Saji, Haitao Zhao, and Zongyou Yin
27.1 Introduction 721
References 767
28 Photochemical Energy Conversion with Single Atoms 773
Haijiao Lu and Zongyou Yin
28.1 Introduction 773
28.2 SAs for Photocatalytic Water Splitting Reaction 775
28.3 SAs for Photocatalytic CO2 Reduction Reaction (CRR) 778
28.4 SAs for Photocatalytic N2 Reduction Reaction (NRR) 780
28.5 Challenge and Opportunity 782
References 783
29 Photoelectrochemical (PEC) Energy Conversion with Single Atoms 787
Mahmoud M. Abdelnaby and Zongyou Yin
29.1 Introduction 787
29.2 SAs for PEC Water Splitting 788
29.3 SAs for PEC CO2 Reduction Reaction 798
29.4 Challenge and Opportunity 807
References 810
30 Future Perspectives 815
Zongyou Yin
Index 817