Discover the latest technologies in the pursuit of zero-waste solutions in the electronics industry
In Electronic Waste: Recycling and Reprocessing for a Sustainable Future, a team of expert sustainability researchers delivers a collection of resources that thoroughly examine methods for extracting value from electronic waste while aiming for a zero-waste scenario in industrial production. The book discusses the manufacturing and use of materials in electronic devices while presenting an overview of separation methods for industrial materials.
Readers will also benefit from a global overview of various national and international regulations related to the topic of electronic and electrical waste.
A must-read resource for scientists and engineers working in the production and development of electronic devices, the authors provide comprehensive overviews of the benefits of achieving a zero-waste solution in electronic and electrical waste, as well as the risks posed by incorrectly disposed of electronic waste.
Readers will enjoy:
- An introduction to electronic waste, including the opportunities presented by zero-waste technologies and solutions
- Explorations of e-waste management and practices in developed and developing countries and e-waste transboundary movement regulations in a variety of jurisdictions
- Practical discussions of approaches for estimating e-waste generation and the materials used in electronic equipment and manufacturing perspectives
- In-depth treatments of various recycling technologies, including physical separation, pyrometallurgy, hydrometallurgy, and biohydrometallurgy
Perfect for materials scientists, electronic engineers, and metal processing professionals, Electronic Waste: Recycling and Reprocessing for a Sustainable Future will also earn a place in the libraries of industrial chemists and professionals working in organizations that use large amounts of chemicals or produce electronic waste.
Table of Contents
Preface xiii
1 Introduction, Vision, and Opportunities 1
Maria E. Holuszko, Denise C. R. Espinosa, Tatiana Scarazzato, and Amit Kumar
1.1 Background 1
1.2 E-Waste 2
1.3 Outline 8
References 9
2 e-Waste Management and Practices in Developed and Developing Countries 15
Pablo Dias, Andréa M. Bernardes, and Nazmul Huda
2.1 Introduction 15
2.2 Overview on WEEE Management and Practices 16
2.3 International WEEE Management and Transboundary Movement 18
2.4 WEEE Management and Practices - Developed and Developing Countries 19
2.5 Developed Countries 21
2.5.1 Switzerland 21
2.5.2 Japan 22
2.5.3 Australia 22
2.6 Developing Countries 23
2.6.1 Brazil 23
2.6.2 India 23
2.6.3 South Africa 24
2.6.4 Nigeria 25
2.6.5 Taiwan 25
2.7 Conclusions 26
References 26
3 e-Waste Transboundary Movement Regulations in Various Jurisdictions 33
Pablo Dias, Md Tasbirul Islam, Bin Lu, Nazmul Huda, and Andréa M. Bernarde
3.1 Background 33
3.2 International Legislation and Transboundary Movement 34
3.3 Extended Producer Responsibility (EPR) 41
3.4 Regulations in Various Jurisdictions 41
3.4.1 Europe 43
3.4.1.1 France 43
3.4.1.2 Germany 43
3.4.1.3 Switzerland 44
3.4.1.4 Norway 44
3.4.2 Americas 45
3.4.2.1 United States of America 45
3.4.2.2 Canada 46
3.4.2.3 Brazil 47
3.4.3 Asia 47
3.4.3.1 Japan 47
3.4.3.2 China 48
3.4.3.3 Taiwan 49
3.4.3.4 India 49
3.4.4 Africa 49
3.4.4.1 South Africa 49
3.4.4.2 Nigeria 50
3.4.5 Australia 50
3.5 Conclusions 51
References 52
4 Approach for Estimating e-Waste Generation 61
Amit Kumar
4.1 Background 61
4.2 Econometric Analysis 61
4.3 Consumption and Use/Leaching/Approximation 1 Method 62
4.4 The Sales/Approximation 2 Method 63
4.5 Market Supply Method 63
4.5.1 Simple Delay 63
4.5.2 Distribution Delay Method 63
4.5.3 Carnegie Mellon Method/Mass Balance Method 64
4.6 Time-Step Method 64
4.7 Summary of Estimation Methods 65
4.8 Lifespan of Electronic Products 65
4.9 Global e-Waste Estimation 66
References 69
5 Materials Used in Electronic Equipment and Manufacturing Perspectives 73
Daniel D. München, Pablo Dias, and Hugo M. Veit
5.1 Introduction 73
5.2 Large Household Appliances (LHA) 75
5.3 Small Household Appliance (SHA) 76
5.4 IT and Telecommunications Equipment 78
5.4.1 Computers and Notebooks 78
5.4.2 Monitors and Screens 79
5.4.3 Mobile Phones (MP) 81
5.4.4 Printed Circuit Boards (PCB) 83
5.5 Photovoltaic (PV) Panels 85
5.6 Lighting Equipment 86
5.7 Toys, Leisure, and Sport 86
5.8 Future Trends in WEEE - Manufacturing, Design, and Demand 89
References 91
6 Recycling Technologies - Physical Separation 95
Amit Kumar, Maria E. Holuszko, and Shulei Song
6.1 Introduction 95
6.2 Dismantling 96
6.3 Comminution/Size Reduction 97
6.3.1 Shredders 97
6.3.2 Hammer Mills 98
6.3.3 High-Voltage Fragmentation 98
6.3.4 Knife Mills 100
6.3.5 Cryogrinding 100
6.4 Particle Size Analysis 100
6.5 Size Separation/Classification 102
6.5.1 Screening 102
6.5.2 Classification 104
6.5.2.1 Centrifugal Classifier 104
6.5.2.2 Gravitational Classifiers 105
6.6 Magnetic Separation 106
6.6.1 Low-Intensity Magnetic Separators 106
6.6.2 High-Intensity Magnetic Separators 107
6.7 Electrical Separation 108
6.7.1 Corona Electrostatic Separation 108
6.7.2 Triboelectric Separation 109
6.7.3 Eddy Current Separation 110
6.8 Gravity Separation 111
6.8.1 Jigs 112
6.8.2 Spirals 112
6.8.3 Shaking Tables 113
6.8.4 Zig-Zag Classifiers 114
6.8.5 Centrifugal Concentrators 114
6.8.6 Dense Medium Separation (DM Bath/Cyclone) 115
6.9 Froth Flotation 116
6.10 Sensor-Based Sorting 119
6.11 Example Flowsheets 119
References 123
7 Pyrometallurgical Processes for Recycling Waste Electrical and Electronic Equipment 135
Jean-Philippe Harvey, Mohamed Khalil, and Jamal Chaouki
7.1 Introduction 135
7.2 Printed Circuit Boards 136
7.3 Pyrometallurgical Processes 137
7.3.1 Smelting 138
7.3.1.1 Copper-Smelting Processes - Sulfide Route 138
7.3.1.2 Copper-Smelting Processes - Secondary Smelters 142
7.3.1.3 Lead-Smelting Processes 142
7.3.1.4 Advantages and Limitations of Smelting Processes 146
7.3.2 Electrochemical Processes 147
7.3.2.1 High-Temperature Electrolysis 148
7.3.2.2 Low-Temperature Electrolysis 149
7.3.3 Other Pyrometallurgical Operations Used in ElectronicWaste Recycling 152
7.3.3.1 Roasting 152
7.3.3.2 Molten Salt Oxidation Treatment 152
7.3.3.3 Distillation 153
7.3.3.4 Pyrolysis 155
References 157
8 Recycling Technologies - Hydrometallurgy 165
Denise C. R. Espinosa, Rafael P. de Oliveira, and Thamiris A. G. Martins
8.1 Background 165
8.2 Waste Printed Circuit Boards (WPCBs) 167
8.3 Photovoltaic Modules (PV) 172
8.4 Batteries 176
8.5 Light-Emitting Diodes (LEDs) 178
8.6 Trends 180
References 181
9 Recycling Technologies - Biohydrometallurgy 189
Franziska L. Lederer and Katrin Pollmann
9.1 Introduction 189
9.2 Bioleaching: Metal Winning with Microbes 189
9.3 Biosorption: Selective Metal Recovery from Waste Waters 191
9.3.1 Biosorption Via Metal Selective Peptides 194
9.3.2 Chelators Derived from Nature 196
9.4 Bioflotation: Separation of Particles with Biological Means 197
9.5 Bioreduction and Bioaccumulation: Nanomaterials from Waste 199
9.6 Conclusion 201
References 202
10 Processing of Nonmetal Fraction from Printed Circuit Boards and Reutilization 213
Amit Kumar and Maria E. Holuszko
10.1 Background 213
10.2 Nonmetal Fraction Composition 214
10.3 Benefits of NMF Recycling 215
10.3.1 Economic Benefits 215
10.3.2 Environmental Protection and Public Health 216
10.4 Recycling of NMF 218
10.4.1 Physical Recycling 218
10.4.1.1 Size Classification 219
10.4.1.2 Gravity Separation 219
10.4.1.3 Magnetic Separation 220
10.4.1.4 Electrical Separation 220
10.4.1.5 Froth Flotation 220
10.4.2 Chemical Recycling 221
10.5 Potential Usage 221
References 223
11 Life Cycle Assessment of e-Waste - Waste Cellphone Recycling 231
Pengwei He, Haibo Feng, Gyan Chhipi-Shrestha, Kasun Hewage, and Rehan Sadiq
11.1 Introduction 231
11.2 Background 232
11.2.1 Theory of Life Cycle Assessment 232
11.3 LCA Studies on WEEE 234
11.3.1 Applications on WEEE Management Strategy 234
11.3.2 Applications on WEEE Management System 235
11.3.3 Applications on Hazardous Potential of WEEE Management and Recycling 236
11.4 Case Study 236
11.4.1 Goal and Scope Definition 237
11.4.1.1 Functional Unit 237
11.4.1.2 System Boundary 238
11.4.2 Life Cycle Inventory 238
11.4.2.1 Formal Collection 239
11.4.2.2 Informal Collection 239
11.4.2.3 Mechanical Dismantling 239
11.4.2.4 Plastic Recycling 240
11.4.2.5 Screen Glass Recycling 240
11.4.2.6 Battery Disposal 240
11.4.2.7 Electronic Refining for Materials 241
11.4.3 Life Cycle Impact Assessment 241
11.4.4 Results 241
11.4.4.1 Feature Phone Formal Collection Scenario 241
11.4.4.2 Feature Phone Informal Collection Scenario 243
11.4.4.3 Smartphone Formal Collection Scenario 244
11.4.4.4 Smartphone Informal Collection Scenario 246
11.4.5 Discussion 247
11.5 Conclusion 249
References 250
12 Biodegradability and Compostability Aspects of Organic Electronic Materials and Devices 255
Abdelaziz Gouda, Manuel Reali, Alexandre Masson, Alexandra Zvezdin,Nia Byway, Denis Rho, and Clara Santato
12.1 Introduction 255
12.1.1 Technological Innovation and Waste 255
12.1.2 Eco-friendliness 257
12.1.3 Organic Electronics 257
12.1.4 Opportunities for Green Organic Electronics 258
12.2 State of the Art in Biodegradable Electronics 258
12.3 Organic Field-Effect Transistors (OFETs) 260
12.3.1 Fundamentals 260
12.3.2 Anthraquinone, Benzoquinone, and Acenequinone 262
12.3.3 Quinacridones 262
12.4 Electrochemical Energy Storage 264
12.4.1 Quinones 264
12.4.2 Dopamine 265
12.4.3 Melanins 265
12.4.4 Tannins 268
12.4.5 Lignin 269
12.5 Biodegradation in Natural and Industrial Ecosystems 269
12.5.1 Degradation and Biodegradation 270
12.5.2 Composting Process 271
12.5.3 Materials Half-Life Under Composting Conditions 274
12.5.4 Biodegradation in the Environment 275
12.6 Microbiome in Natural and Industrial Ecosystems 276
12.6.1 The Ruminant-Hay Natural Ecosystem 279
12.6.2 The Termite-Wood Natural Ecosystem 280
12.6.3 The Industrial Composter-Biowaste Ecosystem 281
12.6.3.1 Municipal Composting Facility 281
12.6.3.2 Engineered Composting Facility 282
12.6.4 Specialized Inoculant Adapted to Organic Matter 282
12.6.5 Specialized Inoculant Adapted to Heavy Metals 283
12.7 Concluding Remarks and Perspectives 284
Acknowledgment 285
References 285
13 Circular Economy in Electronics and the Future of e-Waste 299
Nani Pajunen and Maria E. Holuszko
13.1 Introduction 299
13.2 Digitalization and the Need for Electronic Devices 301
13.3 Recycling and Circular Economy 302
13.4 Challenges for e-Waste Recycling and Circular Economy 304
13.5 Drivers for Change - Circular Economy 306
13.6 Demand for Recyclable Products 309
13.7 Summary 310
References 312
Index 315