+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Portable Spectroscopy and Spectrometry, Applications. Volume 2

  • Book

  • 608 Pages
  • May 2021
  • John Wiley and Sons Ltd
  • ID: 5837008

The most comprehensive resource available on the many applications of portable spectrometers, including material not found in any other published work

Portable Spectroscopy and Spectrometry: Volume Two is an authoritative and up-to-date compendium of the diverse applications for portable spectrometers across numerous disciplines. Whereas Volume One focuses on the specific technologies of the portable spectrometers themselves, Volume Two explores the use of portable instruments in wide range of fields, including pharmaceutical development, clinical research, food analysis, forensic science, geology, astrobiology, cultural heritage and archaeology.

Volume Two features contributions by a multidisciplinary team of experts with hands-on experience using portable instruments in their respective areas of expertise. Organized both by instrumentation type and by scientific or technical discipline, 21 detailed chapters cover various applications of portable ion mobility spectrometry (IMS), infrared and near-infrared (NIR) spectroscopy, Raman and x-ray fluorescence (XRF) spectroscopy, smartphone spectroscopy, and many others. Filling a significant gap in literature on the subject, the second volume of Portable Spectroscopy and Spectrometry:

  • Features a significant amount of content published for the first time, or not available in existing literature
  • Brings together work by authors with assorted backgrounds and fields of study
  • Discusses the central role of applications in portable instrument development
  • Covers the algorithms, calibrations, and libraries that are of critical importance to successful applications of portable instruments
  • Includes chapters on portable spectroscopy applications in areas such as the military, agriculture and feed, hazardous materials (HazMat), art conservation, and environmental science

Portable Spectroscopy and Spectrometry: Volume Two is an indispensable resource for developers of portable instruments in universities, research institutes, instrument companies, civilian and government purchasers, trainers, operators of portable instruments, and educators and students in portable spectroscopy courses.

Table of Contents

List of Contributors xv

Foreword xix

Preface for Volume 2 xxi

Acknowledgements xxiii

1 The Role of Applications in Portable Spectroscopy 1
Richard A. Crocombe, Pauline E. Leary and Brooke W. Kammrath

1.1 Introduction 1

1.2 The Evolution of Applications 1

1.3 What Defines an Application? 5

1.4 The Return on Investment for an Application 11

1.5 Preparing Samples in the Field 12

1.6 The Commercial Success of a Portable Spectrometer 15

1.7 Conclusions and Future Applications 16

References 17

2 Identification and Confirmation Algorithms for Handheld Analyzers 19
Craig M. Gardner, Robert L. Green, Lin Zhang, Lisa M. Lee and Suzanne K. Schreyer

2.1 Introduction 19

2.2 Data Collection 22

2.3 Data Conditioning 26

2.4 Types of Algorithms 26

2.5 Display of Algorithm Results 34

2.6 Computational Considerations 37

2.7 Performance Characterization 39

2.8 Conclusion 40

References 40

3 Library and Method Development for Portable Instrumentation 43
Suzanne K. Schreyer

3.1 Introduction 43

3.2 Instrument Use Overview 44

3.3 Library Development 45

3.4 Qualitative Model Development 48

3.5 Library Build 48

3.6 Case Study: Building a Polymorph Library 50

3.7 Case Study: Counterions and Effect on Selectivity 51

3.8 Case Study: Effect of Moisture on Peaks of Ammonium Nitrate 53

3.9 Case Study: Selectivity in an Explosive Sublibrary 54

3.10 Quantitative Method Development 55

3.11 Building Meaningful Predictive Models 58

3.12 Case Study: Prediction of Protein Levels in Flour Samples 58

3.13 Summary 61

References 62

4 Applications of Portable Optical Spectrometers in the Chemical Industry 65
Xiaoyun Chen, Mark A. Rickard and Zhenbin Niu

4.1 Introduction 65

4.2 Review of Industrial Applications 67

4.3 In-Depth Examples 71

4.4 Conclusions and Prospects 80

References 82

5 The Value of Portable Spectrometers for the Analysis of Counterfeit Pharmaceuticals 85
Pauline E. Leary, Richard A. Crocombe and Ravi Kalyanaraman

5.1 Introduction 85

5.2 Field Analytical Spectroscopy Methods 93

5.3 Deployed Systems 112

5.4 The Future 116

Acknowledgments 117

References 118

6 Forensic Applications of Portable Spectrometers 125
Brooke W. Kammrath, Pauline E. Leary and John A. Reffner

6.1 Breath Alcohol Testing 127

6.2 White-Powder Attacks 131

6.3 Illicit Drugs 134

6.4 Counterfeit Drugs 137

6.5 Explosives 138

6.6 Clandestine Labs 139

6.7 Ignitable Liquids 139

6.8 Future 140

6.9 Conclusions 142

Acknowledgments 143

References 144

7 Military Applications of Portable Spectroscopy 149
Alan C. Samuels

7.1 Introduction 149

7.2 Visible/Near-Infrared Hyperspectral Imaging for Bulk Explosive Material Detection and Camouflage Defeat Applications 150

7.3 Infrared Spectroradiometry for Remote Hazardous Vapor Detection and Early Warning 150

7.4 Infrared and Raman Spectroscopy for Condensed Phase Analysis (Energetics, Chemical Agents, Biological Agents) 151

7.5 Raman Spectroscopy for Surface Contamination Detection 153

7.6 Raman Spectroscopy for Presumptive Biological Hazard Classification and Early Warning of a Biowarfare Agent Attack 154

7.7 Fluorescence Spectroscopy as a Biological Detection “Trigger” 154

7.8 Networked Multimodal Sensors and Data Analytics and the Future 155

References 156

8 Applications of Ion Mobility Spectrometry 159
Pauline E. Leary and Monica Joshi

8.1 Introduction 159

8.2 Applications 162

8.3 Conclusion 174

References 175

9 Portable Spectroscopy in Hazardous Materials Response 179
David DiGregorio

9.1 The Hazmat Clinician 179

9.2 Defining the Mission: Meeting with the IC 180

9.3 Hazmat Huddle or Pre-Entry Brief 183

9.4 HPMS 190

9.5 Raman Spectroscopy 190

9.6 Fourier-Transform Infrared Spectroscopy (FT-IR) 191

9.7 IMS 191

9.8 GC-MS 192

9.9 Colorimetrics 193

9.10 Warranties and Reachback 193

9.11 Pitfalls 194

9.12 Complimentary Technologies 194

9.13 An Introduction to the ScientificWorking Group for the Analysis of Seized Drugs (SWGDRUG) 194

9.14 SWGDRUG Recommendations: How They Related to the Hazmat Field 195

9.15 Ancillary Equipment 196

References 198

10 Toward Clinical Applications of Smartphone Spectroscopy and Imaging 199
William J. Peveler and W. Russ Algar

10.1 Smartphone Imaging and Spectroscopy Capabilities: An Overview 200

10.2 Clinical Biomarkers Targeted for the Smartphone 203

10.3 Toward Clinical Applications of the Smartphone in Low-Cost and Point-of-Care Settings 207

10.4 Toward Clinical Applications in Primary Care or Pathology Laboratory Settings 211

10.5 Microscopy and Imaging on the Smartphone and the Potential Clinical Applications 218

10.6 Optical Measurements with Smartphones in the Clinic: An Outlook 219

References 221

11 Applications of Portable and Handheld Infrared Spectroscopy 227
John A. Seelenbinder and Christina S. Robb

11.1 Rapid Response 228

11.2 Dispersed Samples 231

11.3 Nondestructive Testing 238

11.4 Conclusion 243

References 243

12 Spectra Transfer Between Benchtop Fourier-Transform Near-Infrared and Miniaturized Handheld Near-Infrared Spectrometers 249
Uwe Hoffmann, Frank Pfeifer and Heinz W. Siesler

12.1 Introduction 249

12.2 Experimental Details 255

12.3 Results and Discussion 256

12.4 Summary of Transfer Strategy 262

12.5 Conclusions 265

References 265

13 Applications of Handheld Near-Infrared Spectrometers 267
Hui Yan and Heinz W. Siesler

13.1 Introduction 267

13.2 Instrumentation 267

13.3 Applications 269

13.4 Qualitative Applications of Handheld NIR Spectrometers 269

13.5 Quantitative Analyses with Handheld NIR Spectrometers 276

13.6 Conclusions 294

Acknowledgments 295

References 295

14 X-Ray, LIBS, NMR, and MS Applications in Food, Feed, and Agriculture 299
Krzysztof Bernard Be´c, Justyna Grabska and Christian Wolfgang Huck

14.1 Introduction 299

14.2 Applications of Transportable Spectroscopy and Spectrometry in Food, Feed, and Agriculture 301

14.3 Current Developments, Remaining Challenges, and Future Prospects 317

14.4 Concluding Remarks 319

References 319

15 Portable Near-Infrared Spectroscopy in Food Analysis 325
Ellen V. Miseo, Felicity Meyer and James Ryan

15.1 Introduction 325

15.2 Spectroscopy 326

15.3 Analysis, Sampling, and Detection Limits 327

15.4 Use of Portable Near-Infrared Instruments in Food Analysis 332

15.5 Summary 336

References 336

16 Handheld Raman, SERS, and SORS 347
Michael Hargreaves

16.1 Introduction 347

16.2 Raman Spectroscopy: Sampling Techniques, Technologies, and Considerations 347

16.3 Handheld Raman Devices 350

16.4 Sample Considerations 351

16.5 Usability Considerations 352

16.6 Surface-Enhanced Raman Spectroscopy (SERS) 352

16.7 Spatially Offset Raman Spectroscopy (SORS) 355

16.8 Standoff 358

16.9 Technology Combinations 358

16.10 Leveraging Data 359

16.11 Military Identification Applications 361

16.12 Pharmaceuticals 364

16.13 Narcotics 366

16.14 Novel Psychoactive Substances (NPS) 369

16.15 Summary 372

Acknowledgments 372

Images 372

References 372

17 Portable Raman Spectroscopy in Field Geology and Astrobiology Applications 377
H.G.M. Edwards, J. Jehliˇcka and A. Culka

17.1 Introduction 377

17.2 Dawn of Portable Raman Spectrometers 378

17.3 Conclusions 393

Acknowledgement 395

References 395

18 Hyperspectral Proximal Sensing Instruments and Their Applications for Exploration Through Cover 401
Carsten Laukamp, Monica LeGras and Ian Christopher Lau

18.1 Introduction 401

18.2 Field VNIR-SWIR Sensors 402

18.3 Field and Laboratory Fourier Transform Infrared Spectrometers 406

18.4 Hyperspectral Drill Core Sensing 408

18.5 Data Processing 408

18.6 Applications 412

18.7 Summary 416

Acknowledgements 418

References 418

19 Handheld X-Ray Fluorescence (HHXRF) 423
Stanislaw Piorek

19.1 Introduction - X-Ray Fluorescence 423

19.2 How DidWe Get Here - Evolution of a Handheld XRF Analyzer 425

19.3 Contemporary HHXRF Analyzer: Construction and Operation 427

19.4 Calibration Methods 433

19.5 The Most Important Applications for HHXRF Analyzers 436

19.6 Remarks on Safety When Using HHXRF 448

19.7 Summary and Possible Future Developments for HHXRF 448

References 449

20 XRF and LIBS for Field Geology 455
Bruno Lemiere and Russell S. Harmon

20.1 Introduction 455

20.2 X-Ray Fluorescence Spectroscopy (XRF) 457

20.3 Laser-Induced Breakdown Spectroscopy (LIBS) for Field Geology 471

20.4 Current Potential and Future Developments of Field-Portable XRF and LIBS 486

References 490

21 Portable Spectroscopy for Cultural Heritage 499
Federica Pozzi, Adriana Rizzo, Elena Basso, Eva Mariasole Angelin, Susana França de Sá, Costanza Cucci and Marcello Picollo

21.1 Introduction 499

21.2 Instrumentation 501

21.3 Applications to Cultural Heritage Research 503

21.4 Conclusions 516

Acknowledgments 516

References 517

22 Portable Spectroscopy for On-Site and In Situ Archaeology Studies 523
Mary Kate Donais and Peter Vandenabeele

22.1 Introduction 523

22.2 Molecular and Vibrational Spectroscopic Analysis 524

22.3 Atomic Spectroscopic Analysis 527

22.4 Case Study - Characterization of a Multiphased Stone Tower in Monterubliaglio, Umbria (Italy) by Portable X-ray Fluorescence Spectrometry 530

22.5 Conclusions 537

Acknowledgements 538

References 538

23 The Future of Portable Spectroscopy 545
Richard A. Crocombe

23.1 Introduction 545

23.2 Optical Spectroscopy 545

23.3 General Technology Improvements 546

23.4 Raman Spectrometers 548

23.5 XRF and LIBS 549

23.6 GC-MS and LC-MS 550

23.7 Ion Mobility Spectrometry (IMS) and High-Pressure Mass Spectrometry (HPMS) 550

23.8 NMR (Relaxometry, or Time-Domain NMR) 551

23.9 Hyphenation 551

23.10 Smartphone Spectrometers 552

23.11 Spectrometers Embedded in Consumer Goods 553

23.12 Spectrometers Marketed Directly to Consumers 555

23.13 Emerging Applications for Portable Spectrometers 557

23.14 Portable Hyperspectral Imaging 559

23.15 Biological Analyzers 560

23.16 Algorithms, Databases, and Calibrations 560

23.17 Conclusions 561

Acknowledgements 561

References 562

Index 573

Authors

Richard A. Crocombe Pauline E. Leary Brooke W. Kammrath