+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Fundamentals of Solar Cell Design. Edition No. 1

  • Book

  • 576 Pages
  • August 2021
  • John Wiley and Sons Ltd
  • ID: 5837430
Edited by one of the most well-respected and prolific engineers in the world and his team, this book provides a comprehensive overview of solar cells and explores the history of evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and other fundamentals of solar cell design.

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvested energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production.

Solar cell-based energy harvesting has attracted worldwide attention for its notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, and economy friendly and operational costs. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics.

This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization, analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

This outstanding new volume: - Provides state-of-the-art information about solar cells - Is a unique reference guide for researchers in solar energy - Includes novel innovations in the field of solar cell technology

Audience: This book is a unique reference guide that can be used by faculty, students, researchers, engineers, device designers and industrialists who are working and learning in the fields of semiconductors, chemistry, physics, electronics, light science, material science, flexible energy conversion, industrial, and renewable energy sectors..

Table of Contents

Preface xv

1 Organic Solar Cells 1
Yadavalli Venkata Durga Nageswar and Vaidya Jayathirtha Rao

1.1 Introduction 1

1.2 Classification of Solar Cells 3

1.3 Solar Cell Structure 4

1.4 Photovoltaic Parameters or Terminology Used in BHJOSCs 5

1.4.1 Open-Circuit Voltage Voc 5

1.4.2 Short-Circuit Current Jsc 5

1.4.3 Incident-Photon-to-Current Efficiency (IPCE) 5

1.4.4 Power Conversion Efficiency ηp (PCE) 6

1.4.5 Fill Factor (FF) 6

1.5 Some Basic Design Principles/Thumb Rules Associated With Organic Materials Required for BHJOSCs 6

1.6 Recent Research Advances in Small-Molecule Acceptor and Polymer Donor Types 7

1.7 Recent Research Advances in All Small-Molecule Acceptor and Donor Types 30

1.8 Conclusion 47

Acknowledgement 48

References 48

2 Plasmonic Solar Cells 55
T. Shiyani, S. K. Mahapatra and I. Banerjee

2.1 Introduction 56

2.1.1 Plasmonic Nanostructure 58

2.1.2 Classification of Plasmonic Nanostructures 59

2.2 Principles and Working Mechanism of Plasmonic Solar Cells 60

2.2.1 Working Principle 60

2.2.2 Mechanism of Plasmonic Solar Cells 61

2.3 Important Optical Properties 62

2.3.1 Trapping of Light 63

2.3.2 Scattering and Absorption of Sunlight 63

2.3.3 Multiple Energy Levels 63

2.4 Advancements in Plasmonic Solar Cells 64

2.4.1 Direct Plasmonic Solar Cells 65

2.4.2 Plasmonic-Enhanced Solar Cell 69

2.4.3 Plasmonic Thin Film Solar Cells 69

2.4.4 Plasmonic Dye-Sensitized Solar Cells (PDSSCs) 70

2.4.5 Plasmonic Photoelectrochemical Cells 71

2.4.6 Plasmonic Quantum Dot (QD) Solar Cells 71

2.4.7 Plasmonic Perovskite Solar Cells 72

2.4.8 Plasmonic Hybrid Solar Cells 72

2.5 Conclusion and Future Aspects 72

Acknowledgements 73

References 73

3 Tandem Solar Cell 83
Umesh Fegade

List of Abbreviations 83

3.1 Introduction 85

3.2 Review of Organic Tandem Solar Cell 86

3.3 Review of Inorganic Tandem Solar Cell 89

3.4 Conclusion 95

References 96

4 Thin-Film Solar Cells 103
Gobinath Velu Kaliyannan, Raja Gunasekaran, Santhosh Sivaraj, Saravanakumar Jaganathan and Rajasekar Rathanasamy

4.1 Introduction 104

4.2 Why Thin-Film Solar Cells? 105

4.3 Amorphous Silicon 105

4.4 Cadmium Telluride 108

4.5 Copper Indium Diselenide Solar Cells 111

4.6 Comparison Between Flexible a-Si:H, CdTe, and CIGS Cells and Applications 112

4.7 Conclusion 113

References 114

Contents vii

5 Biohybrid Solar Cells 117
Sapana Jadoun and Ufana Riaz

Abbreviations 117

5.1 Introduction 118

5.2 Photovoltaics 119

5.3 Solar Cells 119

5.3.1 First-Generation 120

5.3.2 Second-Generation 120

5.3.3 Third-Generation 120

5.3.4 Fourth-Generation 121

5.4 Biohybrid Solar Cells 121

5.5 Role of Photosynthesis 122

5.6 Plant-Based Biohybrid Devices 122

5.6.1 PS I-Based Biohybrid Devices 123

5.6.2 PS II-Based Biohybrid Devices 125

5.7 Dye-Sensitized Solar Cells 126

5.8 Polymer and Semiconductors-Based Biohybrid Solar Cells 126

5.9 Conclusion 129

References 129

6 Dye-Sensitized Solar Cells 137
Santhosh Sivaraj, Gobinath Velu Kaliyannan, Mohankumar Anandraj, Moganapriya Chinnasamy and Rajasekar Rathanasamy

6.1 Introduction 138

6.2 Cell Architecture and Working Mechanism 139

6.3 Fabrication of Simple DSSC in Lab Scale 142

6.4 Electrodes 144

6.5 Counter Electrode 145

6.6 Blocking Layer 146

6.7 Electrolytes Used 147

6.7.1 Liquid-Based Electrolytes 148

6.7.1.1 Electrical Additives 148

6.7.1.2 Organic Solvents 148

6.7.1.3 Ionic Liquids 149

6.7.1.4 Iodide/Triiodide-Free Mediator and Redox Couples 149

6.7.2 Quasi-Solid-State Electrolytes 149

6.7.2.1 Thermoplastic-Based Polymer Electrolytes 150

6.7.2.2 Thermosetting Polymer Electrolytes 150

6.7.3 Solid-State Transport Materials 150

6.7.3.1 Inorganic Hole Transport Materials 151

6.7.3.2 Organic Hole Transport Materials 151

6.7.3.3 Solid-State Ionic Conductors 151

6.8 Commonly Used Natural Dyes in DSSC 152

6.8.1 Chlorophyll 152

6.8.2 Flavonoids 152

6.8.3 Anthocyanins 153

6.8.4 Carotenoids 154

6.9 Calculations 154

6.9.1 Power Conversion Efficiency 154

6.9.2 Fill Factor 163

6.9.3 Open-Circuit Voltage 163

6.9.4 Short Circuit Current 163

6.9.5 Determination of Energy Gap of Electrode Material Adsorbed With Natural Dye 163

6.9.6 Absorption Coefficient 164

6.9.7 Dye Adsorption 164

6.10 Conclusion 164

References 165

7 Characterization and Theoretical Modeling of Solar Cells 169
Masoud Darvish Ganji, Mahyar Rezvani and Sepideh Tanreh

 

7.1 Introduction 170

7.2 Classification of SC 172

7.2.1 Inorganic Solar Cells 173

7.2.2 Organic Solar Cell 173

7.3 Working Principle of DSSC 175

7.4 Operation Principle of DSSC 176

7.5 Photovoltaic Parameters 177

7.6 Theoretical and Computational Methods 181

7.6.1 Density Functional Theory (DFT) 182

7.6.2 Basis Sets 183

7.6.3 TDDFT Method 183

7.6.4 Molecular Descriptors 184

7.6.5 Force Field Parameterization for MD Simulations 188

7.6.6 Excited States 189

7.6.7 UV-Vis Spectroscopy 190

7.6.8 Charge Transfer and Carrier Transport 192

7.6.9 Coarse-Grained (CG) Simulations 193

7.6.10 Kinetic Monte Carlo (KMC) Modeling 193

7.6.11 Car-Parrinello Method 195

7.6.12 Solvent Effects 196

7.6.13 Global Reactivity Descriptors 196

7.7 Conclusion 198

References 199

8 Efficient Performance Parameters for Solar Cells 217
Figen Balo and Lutfu S. Sua

8.1 Introduction 218

8.1.1 Potential, Production, and Climate of Ankara 225

8.2 Solar Radiation Intensity Calculation 225

8.2.1 Horizontal Superficies 225

8.2.1.1 On a Daily Basis Total Sun Irradiation 225

8.2.1.2 Daily Diffuse Sun Irradiation 227

8.2.1.3 Momentary Total Sun Irradiation 227

8.2.1.4 Direct and Diffuse Sun Radiation 228

8.2.2 On Inclined Superficies, Computing Sun Irradiation Intensity 228

8.2.2.1 Direct Momentary Sun Radiation 228

8.2.2.2 Diffuse Sun Radiation 228

8.2.2.3 Momentary Reflecting Radiation 229

8.2.2.4 Total Sun Radiation 229

8.3 Methodology 229

8.3.1 The Solar Radiation Assessments by Correlation Models With MATLAB Simulation Software 229

8.3.2 MATLAB Simulation Results and Findings 233

8.3.3 For Ankara Province, the Determinants of the Most Efficiency Solar Cell With AHP Methodology 233

8.4 Conclusions 238

References 240

9 Practices to Enhance Conversion Efficiencies in Solar Cell 247
Andreea Irina Barzic

9.1 Introduction 247

9.2 Basics on Conversion Efficiency 249

9.3 Approaches for Improving Conversion Efficiencies in Solar Cells 253

9.4 Conclusion 264

Acknowledgements 264

References 265

10 Solar Cell Efficiency Energy Materials 271
Zeeshan Abid, Faiza Wahad, Sughra Gulzar, Muhammad Faheem Ashiq, Muhammad Shahid Aslam, Munazza Shahid, Muhammad Altaf and Raja Shahid Ashraf

10.1 Introduction 272

10.2 Solar Cell Efficiency 274

10.3 Historical Development of Solar Cell Materials 275

10.4 Solar Cell Materials and Efficiencies 277

10.4.1 Crystalline Silicon 278

10.4.2 Silicon Thin-Film Alloys 282

10.4.3 III-V Semiconductors 284

10.4.4 Chalcogenide 287

10.4.4.1 Chalcopyrites 287

10.4.4.2 Cadmium Telluride (CdTe) 288

10.4.5 Organic Materials 289

10.4.6 Hybrid Organic-Inorganic Materials 293

10.4.6.1 Dye-Sensitized Solar Cell Materials 293

10.4.6.2 Perovskites 296

10.4.7 Quantum Dots 300

10.5 Conclusion and Prospects 302

References 303

11 Analytical Tools for Solar Cell 317
Mohamad Saufi Rosmi, Ong Suu Wan, Mohamad Azuwa Mohamed, Zul Adlan Mohd Hir and Wan Nur Aini Wan Mokhtar

11.1 Introduction 318

11.2 Transient Absorption Spectroscopy 319

11.2.1 Application of Transient Absorption Spectroscopy in Solar Cells 320

11.3 Electron Tomography 323

11.3.1 Application of Electron Tomography (ET) in Solar Cells 324

11.4 Conductive Atomic Force Microscopy (C-AFM) 327

11.4.1 Application of C-AFM in Solar Cells 329

11.5 Kelvin Probe Force Microscopy 330

11.5.1 Application of Scanning Kelvin Probe Force Microscopy for Solar Cells 334

11.6 Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy 335

11.6.1 Application of Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy in Solar Cell 338

11.7 Conclusion 340

References 340

12 Applications of Solar Cells 345
Mohd Imran Ahamed and Naushad Anwar

12.1 Introduction 345

12.2 An Overview on Photovoltaic Cell 348

12.2.1 History 348

12.2.2 Working Principle of Solar Cell 348

12.2.3 First-Generation Photovoltaic Cells: Crystalline Silicon Form 351

12.2.4 Second-Generation Photovoltaic Cells: Thin-Film Solar Cells 352

12.2.5 Third-Generation Photovoltaic Cells 353

12.3 Applications of Solar Cells 354

12.3.1 Perovskite Solar Cell 354

12.3.2 Dye-Sensitized Solar Cell 355

12.3.3 Nanostructured Inorganic-Organic Heterojunction Solar Cells (NSIOHSCs) 356

12.3.4 Polymer Solar Cells 357

12.3.5 Quantum Dot Solar Cell (QDCs) 358

12.3.6 Organic Solar Cells 360

12.4 Conclusion and Summary 362

References 362

13 Challenges of Stability in Perovskite Solar Cells 371
Mutayyab Afreen, Jazib Ali and Muhammad Bilal

13.1 Introduction 371

13.2 Degradation Phenomena and Stability Measures in Perovskite 373

13.2.1 Thermal Stability 373

13.2.2 Structural and Chemical Stability 375

13.2.3 Oxygen and Moisture 376

13.2.4 Visible and UV Light Exposure 378

13.3 Stability-Interface Interplay 379

13.3.1 Chemical Reaction at the Interface 379

13.3.2 Degradation on the Top Electrode 380

13.3.3 Hysteresis Phenomenon in PSC Devices 381

13.4 Effect of Selective Contacts on Stability 382

13.4.1 Electron-Transport Layers 382

13.4.2 Hole Transport Layers 384

13.4 Conclusion 387

References 387

14 State-of-the-Art and Prospective of Solar Cells 393
Zahra Pezeshki and Abdelhalim Zekry

Acronyms 393

14.1 Introduction 396

14.2 State-of-the-Art of Solar Cells 396

14.2.1 Production Volume 400

14.2.2 Cost Breakdown 400

14.2.3 Main Technologies 401

14.2.3.1 Si Solar Cell Arrays 401

14.2.3.2 DSSCs 403

14.2.3.3 Photoanodes 404

14.2.3.4 C/Si Heterojunctions 404

14.2.3.5 a-C/Si Heterojunctions 410

14.2.3.6 Non-Fullerene Acceptor Bulk Heterojunctions 410

14.2.3.7 a-Si 411

14.2.3.8 Perovskites 411

14.2.3.9 Metal-Halide-Based Perovskites 413

14.2.3.10 Sn-Based Perovskites 415

14.2.3.11 Heavily Doped Solar Cells 416

14.2.3.12 PV Building Substrates 416

14.2.3.13 Solar Tracking System 422

14.2.3.14 Solar Concentrators 425

14.2.3.15 Solar Power Satellite 426

14.2.3.16 Roof-Top Solar PV System 427

14.2.3.17 Short-Wavelength Solar-Blind Detectors 428

14.2.3.18 GCPVS 429

14.2.3.19 Microwave Heating in Si Solar Cell Fabrication 431

14.2.3.20 Refrigeration PV System 432

14.2.3.21 Solar Collectors and Receivers 433

14.2.3.22 Solar Drying System 435

14.2.3.23 Water Networks With Solar PV Energy 436

14.2.3.24 Wind and Solar Integrated to Smart Grid 437

14.2.3.25 Green Data Centers 440

14.3 Prospective of Solar Cells 443

14.4 Conclusion 445

References 447

15 Semitransparent Perovskite Solar Cells 461
Faiza Wahad, Zeeshan Abid, Sughra Gulzar, Muhammad Shahid Aslam, Saqib Rafique, Munazza Shahid, Muhammad Altaf and Raja Shahid Ashraf

15.1 Introduction 462

15.2 Device Architectures 464

15.2.1 Conventional n-i-p Device Structure 465

15.2.2 Inverted p-i-n Device Structure 465

15.3 Optical Assessment 466

15.3.1 Average Visible Transmittance 466

15.3.2 Corresponding Color Temperature 467

15.3.3 Color Rendering Index 468

15.3.4 Transparency Color Perception 468

15.3.5 Light Management 471

15.4 Materials 474

15.4.1 Photoactive Layer 474

15.4.2 Charge Transport Layers (ETL and HTL) 479

15.4.3 Transparent Electrode 481

15.5 Applications 484

15.5.1 Building-Integrated Photovoltaics 484

15.5.2 Tandem Devices 486

15.6 Conclusion 492

References 492

16 Flexible Solar Cells 505
Santosh Patil, Rushi Jani, Nisarg Purabiarao, Archan Desai, Ishan Desai and Kshitij Bhargava

16.1 Introduction 505

16.1.1 Need for Solar Energy Harnessing 505

16.1.2 Brief Overview of Generations of Solar Cells 506

16.1.3 Limitations of Solar Cells 508

16.1.4 What is Flexible Solar Cell (FSC)? 509

16.2 Materials for FSCs 510

16.2.1 Semiconductors 510

16.2.2 Substrates 512

16.2.3 Electrodes 513

16.2.4 Encapsulations 514

16.3 Thin-Film Deposition 514

16.3.1 R2R Processing 515

16.3.2 Chemical Bath Deposition 516

16.3.3 Chemical Vapor Deposition 517

16.3.4 Dip Coating 518

16.3.5 Spin Coating 520

16.3.6 Screen Printing 521

16.4 Characterizations for FSCs 522

16.4.1 Material Characterization 523

16.4.2 Device Characterization 529

16.5 Issues in FSCs 531

16.6 Performance Comparison of RSCs and FSCs 532

16.7 Applications of Flexible Solar Cell 532

16.8 Conclusion 533

References 534

Index 537

Authors

Mohd Imran Ahamed Aligarh Muslim University, Aligarh, India. Rajender Boddula National Center for Nanoscience and Technology (NCNST, Beijing). Mashallah Rezakazemi University of Tehran (UT); Shahrood University of Technology.