+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Waste Heat Recovery in Process Industries. Edition No. 1

  • Book

  • 288 Pages
  • February 2022
  • John Wiley and Sons Ltd
  • ID: 5837436

Explore modern waste heat recovery technology across a variety of industries  

In Waste Heat Recovery in Process Industries, esteemed thermal engineer Hussam Jouhara delivers an organized and comprehensive exploration of waste heat recovery systems with a focus on industrial applications in different temperature ranges. The author describes various waste heat recovery systems, like heat exchangers, waste heat boilers, air preheaters, direct electrical conversion devices, and thermal storage.  

The book also offers discussions of the technologies and applications relevant to different temperature ranges present in industrial settings along with revealing case studies from various industries. Waste Heat Recovery in Process Industries examines a variety of industries, from steel to ceramics, chemicals, and food, and how plants operating in these sectors can use waste heat to improve their energy efficiency, reduce energy costs, and minimize their carbon footprint. 

The book also offers: 

  • A thorough introduction to waste heat recovery systems, including recuperative and regenerative burners, heat exchangers, waste heat boilers, air preheaters, and heat pumps 
  • Comprehensive explorations of low temperature applications, below 100°C, including advantages and drawbacks, as well as illustrative case studies 
  • Practical discussions of medium temperature applications, between 100°C and 400°C, including case studies 
  • In-depth examination of high temperature applications, above 400°C, including several case studies  

Perfect for chemical, mechanical, process, and power engineers, Waste Heat Recovery in Process Industries is also an ideal resource for professionals working in the chemical, metal processing, pharmaceutical, and food industries. 

Table of Contents

Preface xiii

1 Thermodynamic Cycles 1

1.1 Introduction to Thermodynamic Cycles 1

1.2 Rankine Cycle 1

1.2.1 Introduction 1

1.2.2 Thermodynamic Diagrams 2

1.2.3 The Carnot Cycle 10

1.2.4 Ideal and Actual Rankine Cycles 12

1.2.4.1 Ideal Cycle 13

1.2.4.2 Superheated Rankine Cycle 15

1.2.4.3 Actual Rankine Cycle 17

1.2.4.4 Improvements to the Rankine Cycle 19

1.2.4.5 Regenerative Rankine Cycles 22

1.2.4.6 Cogeneration 26

1.2.5 Other Configurations of the Rankine Cycle 29

1.2.5.1 Supercritical Rankine Cycles 29

1.2.5.2 Reverse Rankine Cycles 30

1.2.6 Rankine Cycles in Power Plants 31

1.2.6.1 Fossil Fuel Power Plants 31

1.2.6.2 Nuclear Power Plants 32

1.2.6.3 Overall Efficiency of a Power Plant 32

1.2.6.4 Case Studies 33

1.3 Organic Rankine Cycle 34

1.3.1 Configurations of ORC 35

1.3.1.1 Basic ORC Configuration 35

1.3.1.2 ORC with Preheating 36

1.3.1.3 Recuperative ORC 38

1.3.1.4 Recuperative ORC with Preheating 39

1.3.2 Organic Working Fluids 40

1.3.3 Organic Working Fluid Selection 42

1.3.4 Applications of the ORC 45

1.3.4.1 Waste Heat Recovery 45

1.4 Kalina Cycle 46

1.4.1 Cycle Fundamentals 46

1.4.1.1 Why Use Ammonia-Water Solution in Kalina Cycle? 48

1.4.2 Advantages and Drawbacks 49

1.4.2.1 Advantages 49

1.4.2.2 Drawbacks 50

1.4.3 Applications of the Kalina Cycle 50

1.4.3.1 The Different Configurations of the Cycle 51

1.4.4 Case Studies 53

1.5 Brayton Cycle 53

1.5.1 Regenerative Brayton Cycle (Regenerator) 57

1.5.1.1 Compressor Analysis 58

1.5.1.2 Turbine Analysis 58

1.5.1.3 Heat Supplied to the Cycle 59

1.5.2 Regenerative Brayton Cycle (Reheater and Intercooler) 59

1.5.2.1 Intercooling 60

1.5.2.2 Reheating 60

1.6 Chapter Summary 61

References 62

2 Waste Heat Recovery 67

2.1 Burner and Air Preheaters 67

2.1.1 Recuperators 67

2.1.1.1 Recuperative Burners 68

2.1.1.2 Classifying Recuperative Burners 71

2.1.1.3 Efficiency Improvement and Fuel Savings 72

2.1.2 Regenerators 74

2.1.2.1 Rotary Regenerators 74

2.1.2.2 Static Regenerators 75

2.1.2.3 Regenerative Burners 75

2.1.3 Burner Technology Comparison 76

2.1.4 No X Formation 77

2.1.5 Run-Around Coil 78

2.2 Heat Exchangers 79

2.2.1 Shell and Tube HEXs 79

2.2.1.1 Construction 80

2.2.1.2 Applications and Limitations 82

2.2.2 Plate Heat Exchanger 82

2.2.2.1 Spiral Plate Heat Exchanger 83

2.2.3 Heat Pipe Heat Exchanger 83

2.2.4 Compact HEX 85

2.3 Waste Heat Boilers 86

2.3.1 Different WHB Designs 87

2.3.2 WHB Methodologies 88

2.3.2.1 Feed Water Preheating Effect 88

2.3.2.2 Optimising Thermodynamic Cycles 89

2.3.2.3 Heat Recovery Boiler with Water Spray Systems 91

2.3.3 Failure Modes 92

2.3.3.1 Failure Modes Analysis 92

2.4 Heat Recovery Steam Generators 93

2.4.1 Construction of Waste HRSG 94

2.4.1.1 HRSG Design and Construction 95

2.4.1.2 Evaporator 95

2.4.1.3 Superheater 96

2.4.1.4 Economiser 96

2.4.1.5 Steam Drum 96

2.4.1.6 Evaporator Types 96

2.4.1.7 Horizontal Tube HEXs 98

2.4.1.8 Natural Circulation HRSGs 98

2.4.1.9 Assisted (or Forced) Circulation HRSGs 99

2.4.1.10 Tube Materials 99

2.4.1.11 The ‘Pinch Point’ and Other Effects 100

2.5 Heat Pumps 100

2.5.1 Fundamental Principles of Heat Pumps 100

2.5.1.1 Cooling Mode 101

2.5.1.2 Heating Mode 101

2.5.2 Variation of Heat Pump System 102

2.5.2.1 Air Source Heat Pump System 103

2.5.2.2 Ground Source Heat Pump System 103

2.5.2.3 Water Source Heat Pump System 105

2.5.2.4 Water Loop Heat Pump System 105

2.5.2.5 Exhaust Air System 106

2.5.2.6 Hybrid Heat Pump 106

2.5.2.7 Solar-Assisted Heat Pumps 106

2.6 Direct Electrical Conversion Device 107

2.6.1 TEG - Working Principle 108

2.6.2 The Seebeck Effect 109

2.6.3 The Peltier Effect 109

2.6.3.1 Applications of the Peltier Effect 110

2.6.4 Thomson Effect 110

2.6.5 Joule Heating 111

2.6.6 Theoretical Principle 112

2.6.7 Figure of Merit 112

2.6.8 Fermi Level 113

2.6.9 Nano-Sizing 114

2.6.10 Efficiency of TEG 115

2.7 Thermal Storage 116

2.7.1 Sensible Heat Storage 117

2.7.2 Latent Heat Storage 120

2.7.3 Thermochemical Storage 123

2.7.4 Phase Change Materials 123

2.7.5 Organic Material 125

2.7.6 Inorganic PCMs 128

2.7.7 Eutectic PCMs 128

2.7.8 PCM Methodologies 129

2.7.8.1 Encapsulation of PCMs 129

2.7.8.2 Microencapsulated PCMs 129

2.7.8.3 Macroencapsulation of the PCMs 132

2.7.8.4 Nanomaterial PCMs 132

2.7.8.5 Shape Stabilisation 135

2.8 Design Development Methods 135

2.8.1 Introduction 135

2.8.2 Heat Exchangers 140

2.8.2.1 Local Heat Transfer 140

2.8.2.2 LMTD Method 147

2.8.2.3 Effectiveness-Number of Transfer Units (ε-NTU) Method 151

2.8.3 Regenerative and Recuperative Burners 152

2.8.3.1 Regenerative Burners 154

2.8.3.2 Recuperative Burners 156

2.8.4 Waste Heat Boilers 157

2.8.5 Air Preheaters 160

2.8.6 Heat Recovery Steam Generator 166

2.8.7 Heat Pumps 170

2.8.8 Direct Electrical Conversion Device 173

2.8.9 Thermal Storage 176

References 178

3 Low-Temperature Applications 191

3.1 Refrigeration 191

3.2 Cryogenics 198

3.2.1 Loop Heat Pipe 199

3.3 HVAC 204

References 209

4 Medium-Temperature Applications 213

4.1 Food Industry 213

4.1.1 Energy Use in the Industry 213

4.1.2 Case Study 1: Heat Recovery Potential of the Crisps Manufacturing Process 214

4.1.3 Case Study 2: Temperature and Energy Performance of Open Refrigerated Display Cabinets Using Heat Pipe Shelves 215

4.2 Ventilation 221

4.2.1 Applications 221

4.3 Solar Energy 223

4.4 Geothermal Energy 230

4.5 Automotive Industry 233

4.5.1 Industrial Processes 235

4.6 Aviation 237

References 239

5 High-Temperature Applications 245

5.1 Steel Industry 245

5.1.1 TEG Modules 246

5.1.2 Heat Exchangers 246

5.1.2.1 Application 1: Slag Particles Blast Furnace Retrofit 246

5.1.2.2 Application 2: Flat Heat Pipe Heat Exchanger 247

5.1.3 Recuperators 249

5.1.3.1 Application 1: Heat Recuperator for Steel Slag 249

5.2 Ceramic Industry 251

5.2.1 Introduction 251

5.2.2 Heat Exchangers 251

5.2.2.1 Application 1: Radiative Heat Pipe 251

5.2.2.2 Application 2: Multi-Pass Heat Pipe 252

5.2.2.3 Application 3: Forced Convection Heat Pipe 253

5.3 Cement Industry 254

5.3.1 Gas Suspension Preheaters 255

5.3.1.1 Application 1 255

5.3.1.2 Application 2 256

5.3.2 Heat Pipe Thermoelectric Generator 256

5.4 Aluminium Industry 258

5.4.1 Rotary Regenerator 258

5.4.2 Heat Exchangers 258

5.4.3 Heat Pumps 258

5.4.4 Recuperators 260

5.4.4.1 Radiative Recuperator 260

5.4.4.2 Convective Recuperator 261

5.4.4.3 Hybrid Recuperator 262

5.4.5 Thermoelectric Device 262

5.4.6 Regenerative Burner 262

5.4.7 Preheating Scrap 264

5.4.8 De-coating 265

References 265

Index 269

Authors

Hussam Jouhara Brunel University, London, UK.