Table of Contents
Preface xv
Part I Fundamentals of Triboelectric Nanogenerator 1
1 Overview of Triboelectric Nanogenerators 3
Xiaosheng Zhang
1.1 Energy Crisis of Microsystems 3
1.2 Microenergy Technologies 5
1.2.1 Photovoltaic Effect 7
1.2.2 Thermoelectric Effect 7
1.2.3 Electromagnetic Effect 8
1.2.4 Piezoelectric Effect 8
1.3 Triboelectric Nanogenerators 9
1.3.1 Principle of Triboelectric Nanogenerators 9
1.3.2 Key Factor: Triboelectric Series 11
1.3.3 Material Progress of Triboelectric Nanogenerators 11
1.3.4 Challenges of Triboelectric Nanogenerators 14
1.4 Summary 14
Abbreviations 15
References 15
2 Structures of Triboelectric Nanogenerators 19
Haixia Zhang
2.1 Operation Mechanisms of TENGs 19
2.1.1 Contact-Separation (CS) Mode 21
2.1.2 Relative-Sliding (RS) Mode 21
2.1.3 Single-Electrode (SE) Mode 22
2.1.4 Freestanding (FS) Mode 22
2.2 Typical Structures of TENGs 24
2.2.1 Plane-Shaped TENGs 24
2.2.2 Arch-Shaped TENGs 26
2.2.3 Zig-Zag-Shaped TENGs 30
2.2.4 Wavy-Shaped TENGs 33
2.2.5 Tank-Shaped TENGs 33
2.2.6 Rotor-Shaped TENGs 33
2.3 Summary 37
Abbreviations 37
References 38
3 Fabrication of Triboelectric Nanogenerators 41
Bo Meng
3.1 Mass Fabrication Technologies for Triboelectric Nanogenerators 41
3.1.1 Soft Lithography 41
3.1.2 Flexible Printed Circuit Manufacture 44
3.1.3 Roll-to-Roll Manufacture 45
3.1.4 3D Printing 46
3.1.5 Textile Manufacture 49
3.2 Performance Enhancement for Triboelectric Nanogenerators 50
3.2.1 Plasma Treatment 51
3.2.2 Wrinkle-Structured Surface 51
3.2.3 Chemical Synthesis 53
3.3 Summary 54
Abbreviations 55
References 55
4 Characterization of Triboelectric Nanogenerators 59
Yu Song
4.1 Electrical Operating Cycles of Triboelectric Nanogenerators 60
4.1.1 V-Q Plot and Its Characteristics 60
4.1.2 Operating Cycles of Energy Output 61
4.1.3 Measurements of Operating Cycles 64
4.2 Standard and Figure of Merits for Quantifying Triboelectric Nanogenerators 66
4.2.1 Figure of Merits of Triboelectric Nanogenerators 66
4.2.2 Structural Figure of Merits of Triboelectric Nanogenerators 67
4.2.3 Material Figure of Merit for Triboelectric Nanogenerators 70
4.3 Summary 73
Abbreviations 74
References 74
5 Power Management of Triboelectric Nanogenerators 77
Xiaoliang Cheng
5.1 Theoretical Analysis of Power Transmittance of TENGs 77
5.1.1 Resistive Load Characteristics of TENGs 78
5.1.2 Capacitive Load Characteristics of TENGs 78
5.2 The Progress in TENG Power Management 81
5.2.1 Using Inductive Transformers 81
5.2.2 Using Capacitive Transformers 82
5.2.3 Using LC Oscillation Circuit 83
5.3 Summary 90
Abbreviations 90
References 91
Part II Approaches to Flexible and Stretchable Device 95
6 Overview of Flexible and Stretchable Approaches 97
Mengdi Han
6.1 Intrinsically Flexible or Stretchable Materials 97
6.1.1 Nanomaterials in Different Dimensions 97
6.1.2 Organic Materials 100
6.1.3 Other Materials 102
6.2 Structural Designs for Flexible and Stretchable Electronics 103
6.2.1 Structural Design for Flexible Electronics 103
6.2.2 2D Structural Design for Stretchable Electronics 105
6.2.3 3D Structural Design for Stretchable Electronics 107
6.3 Summary 107
Abbreviations 107
References 108
7 Flexible and Stretchable Devices from 0D Nanomaterials 113
Zongming Su
7.1 0D Nanomaterials 114
7.1.1 Quantum Dots 114
7.1.2 Carbon Quantum Dots 115
7.1.3 Gold Nanoparticles 116
7.2 Thin Films Using 0D Nanomaterials 117
7.2.1 Casting 117
7.2.2 Dip Coating 118
7.2.3 Langmuir-Blodgett Deposition 120
7.3 Patterning Methods and Applications 121
7.3.1 Screen Printing 121
7.3.2 Inkjet Printing 121
7.3.3 Microcontact Printing 122
7.4 Applications of 0D Nanomaterials 123
7.4.1 Electrodes 124
7.4.2 Light-Emitting Diodes 125
7.4.3 Transistors 125
7.5 Summary 128
Abbreviations 128
References 129
8 Flexible and Stretchable Devices from 1D Nanomaterials 133
Liming Miao
8.1 Carbon Nanotubes 133
8.1.1 Fabrication Methods for CNTs 133
8.1.1.1 CNT-Based Bulk Materials 134
8.1.1.2 CNT-Based Surface Materials 134
8.1.2 Application of CNTs 136
8.2 ZnO Nanowires 138
8.2.1 Synthesis of ZnO Nanowires 139
8.2.2 Applications of ZnO Nanowires 141
8.3 Ag Nanowires 142
8.3.1 Fabrication Methods for Ag Nanowires 142
8.3.2 Applications of Ag Nanowires 143
8.4 Summary 145
Abbreviations 145
References 146
9 Flexible and Stretchable Devices from 2D Nanomaterials 149
Jinxin Zhang
9.1 2D Nanomaterials 149
9.1.1 Graphene 150
9.1.2 TMDs 151
9.1.3 Boron Nitride 151
9.2 Synthesis of Graphene 152
9.2.1 Micromechanical Exfoliation 152
9.2.2 Epitaxial Growth 153
9.2.3 Chemical Exfoliation 153
9.3 Graphene Transfer 154
9.3.1 Mechanical Exfoliation 154
9.3.2 Polymer-Assisted Transfer 154
9.3.3 Roll-to-Roll Transfer 156
9.3.4 “Transfer-Free” Method 156
9.4 Applications of Graphene 157
9.4.1 Flexible and Stretchable Transparent Electrodes 157
9.4.2 Nanogenerators 158
9.5 Summary 160
Abbreviations 161
References 161
10 Flexible and Stretchable Devices from Unconventional 3D Structural Design 165
Hangbo Zhao and Mengdi Han
10.1 Stretchable 3D Ribbon and Membrane Structures Formed by Basic Buckling 165
10.1.1 3D Nanoribbons 166
10.1.2 3D Nanomembranes 167
10.1.3 3D Bridge-Island Structures 167
10.2 Deterministic 3D Assembly 167
10.2.1 Basic Approach of Deterministic 3D Assembly 169
10.2.2 3D Kirigami Structure in Micro-/Nanomembranes 172
10.2.3 Buckling Control Assisted by Stress and Strain Engineering 172
10.2.4 Multilayer 3D Structures 173
10.2.5 Freestanding 3D Structures 175
10.2.6 Morphable 3D Structures by Multistable Buckling Mechanics 176
10.3 Flexible and Stretchable Devices from 3D Assembly 177
10.3.1 Electronic Devices and Systems 177
10.3.2 Optical and Optoelectronic Devices 177
10.3.3 Scaffolds as Interfaces with Biological Systems 178
10.4 Summary 180
Abbreviations 181
References 181
11 Flexible and Stretchable Devices from Other Materials 183
Haotian Chen
11.1 Polymer-Based Conductive Materials 183
11.1.1 PANI 184
11.1.2 PPy 185
11.1.3 PEDOT : PSS 185
11.1.4 Organic Nanowires 185
11.2 Composite-Based Conductive Materials 189
11.2.1 Conductive Fillers Blended into Stretchable Elastomers 189
11.2.2 Conductive Film Embedded into Stretchable Elastomer 191
11.3 Textile-Based Conductive Materials 195
11.3.1 Fiber-Based Conductive Materials 195
11.3.2 Textile-Based Conductive Materials 196
11.4 Summary 199
Abbreviations 199
References 200
Part III Self-Powered Smart System 203
12 Active Sensors 205
Xuexian Chen
12.1 Active Touch Sensors 205
12.1.1 Static and Dynamic Pressure Sensor 206
12.1.2 Tactile Imaging Sensor 206
12.1.3 Single-Electrode Touch Sensor 207
12.2 Active Vibration Sensors 210
12.2.1 Vibration Sensor for Quantitative Amplitude Measurement 210
12.2.2 Vibration Acceleration Sensor 212
12.2.3 Vibration Direction Sensor 213
12.2.4 Acoustic Sensor 213
12.3 Active Motion Sensors 215
12.3.1 Linear Displacement Sensor 215
12.3.2 Angle Sensor 217
12.3.3 Omnidirectional Tilt Sensor 217
12.4 Active Chemical/Environmental Sensors 219
12.4.1 Chemical Sensor 219
12.4.2 UV Sensor 221
12.5 Summary 222
Abbreviations 222
References 223
13 Hybrid Sensing Technology 227
Xiaosheng Zhang, Yanyuan Ba, and Mengdi Han
13.1 Dual Hybrid Power Technology 227
13.1.1 Triboelectric-Piezoelectric Nanogenerator 228
13.1.2 Triboelectric-Photovoltaic Nanogenerator 231
13.1.3 Triboelectric-Electromagnetic Nanogenerator 233
13.2 Multiple Hybrid Power Technology 234
13.2.1 Triple Hybrid Generators 234
13.2.2 Four-Mechanism Hybrid Generators 235
13.3 Hybrid Sensors and Applications 238
13.3.1 Piezoelectric-Triboelectric Hybrid Sensors 239
13.3.2 Electromagnetic-Triboelectric Hybrid Sensors 242
13.3.3 Multiple Hybrid Sensors 247
13.4 Summary 249
Abbreviations 250
References 251
14 Smart Actuators 253
Xiaosheng Zhang and Zhaohui Wu
14.1 Actuators in Optics 254
14.1.1 Laser Controller 254
14.1.2 Tunable Optical Membranes 258
14.2 Actuators in Biomedicine 261
14.2.1 Bladder Illness Curation 261
14.2.2 Drug Delivery 264
14.3 Actuators in Industrial Application 267
14.3.1 Electrospinning System 268
14.3.2 Syringe Printing 270
14.4 Actuators in Microfluidic Manipulation 272
14.4.1 Droplet Motion Drive 272
14.4.2 Microfluidic Transport 274
14.5 Summary 276
Abbreviations 276
References 277
15 Flexible and Stretchable Electronic Skin 281
Mayue Shi and Hanxiang Wu
15.1 Design of Electronic Skin 281
15.2 Electronic Skin for Mechanical Sensing 285
15.2.1 Pressure Sensing 285
15.2.2 Sliding Sensing 288
15.2.3 Bending Sensing 288
15.2.4 Location Sensing 289
15.2.5 Strain Sensing 290
15.3 Electronic Skin for Physiological Sensing 294
15.3.1 Multimodal Sensing 294
15.3.2 Physiological Monitoring 296
15.3.3 Signal Transmission 298
15.3.4 Reliability 298
15.4 Summary 301
Abbreviations 301
References 302
Part IV Applications of Flexible and Stretchable Self-Powered Smart System 305
16 All-in-One Self-Powered Microsystems 307
Xiaosheng Zhang and Danliang Wen
16.1 All-in-One Energy Harvester 308
16.1.1 One-Structural Triple-mechanism Energy Harvester 309
16.1.2 One-Structural Flexible Energy Harvester 310
16.1.3 One-Structural Multi-mechanism Energy Harvester 312
16.2 All-in-One Power Unit 316
16.2.1 Connection of TENGs and Traditional Circuits 316
16.2.2 Integration of TENGs and Flexible Supercapacitors 320
16.3 All-in-One Self-Powered Microsystems 326
16.3.1 All-Fiber-Based Self-Powered Microsystem 326
16.3.2 All-in-One Self-charging Smart Bracelet 326
16.3.3 Other Research of All-in-One Self-Powered Microsystems 327
16.4 Summary 335
Abbreviations 335
References 336
17 Applications in Biomedical Systems 339
Cunman Liang and Mengdi Han
17.1 Power Sources of Implantable Medical Devices 340
17.1.1 Power Source for Pacemakers 340
17.1.2 Power Source for Medical Lasers 342
17.1.3 Hybrid Power Source for Medical Applications 344
17.2 Active Monitoring 345
17.2.1 Nanogenerators for Cardiac Monitoring 345
17.2.2 Multifunctional Real-Time Monitoring 347
17.2.3 Versatile Energy Conversion and Monitoring 350
17.2.4 Self-Powered Wireless Body Sensor Network 352
17.3 Self-Powered System for Electric Stimulation in Tissue Engineering 353
17.3.1 Self-Powered Electrical-Stimulation-Assisted Neural Differentiation System 353
17.3.2 Biodegradable TENG for in Vivo Short-Term Stimulation 354
17.3.3 Absorbable Bioresorbable in Vivo Natural-Materials-Based TENGs 355
17.4 Summary 356
Abbreviations 357
References 357
18 Applications in Internet of Things and Artificial Intelligence 359
Mayue Shi and Hanxiang Wu
18.1 Applications in Internet of Things 359
18.1.1 Internet of Things 359
18.1.2 Self-Powered Sensing Nodes 360
18.1.3 Wireless Communication 363
18.1.4 Power Management Circuit 364
18.2 Applications in Artificial Intelligence 367
18.2.1 Artificial Intelligence 367
18.2.2 Electronic Skin 368
18.2.3 Robotic Prosthetics 371
18.2.4 Human-Machine Interfaces 374
18.3 Summary 376
Abbreviations 376
References 377
19 Applications in Environmental Monitoring/Protection 379
Hang Guo and Wei Tang
19.1 Self-powered EnvironmentalMonitoring System 379
19.1.1 Phenol Detection 380
19.1.2 Dopamine Detection 382
19.1.3 Heavy Metal Ion Detection 383
19.2 Self-powered Environmental Protection 384
19.2.1 Degradation of AAB 384
19.2.2 Degradation of Methyl Orange (MO) System 384
19.2.3 Removing Fly Ash and SO2 385
19.2.4 Seawater Desalination (SD) and Electrolysis (SE) System 386
19.3 Self-powered Electrochemistry System 388
19.3.1 Water Electrolysis Units 388
19.3.2 Electrochemical Polymerization System 389
19.3.3 Electrochemical Reduction System 390
19.4 Self-powered Anticorrosion 391
19.4.1 Driven by Mechanical Energy 392
19.4.2 Driven by Wave Energy 393
19.5 Summary 394
Abbreviations 394
References 395
Index 399