+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Flexible and Stretchable Triboelectric Nanogenerator Devices. Toward Self-powered Systems. Edition No. 1

  • Book

  • 424 Pages
  • October 2019
  • John Wiley and Sons Ltd
  • ID: 5837744
The book starts with the fundamentals of triboelectric nanogenerators (TENGs), and continues through to fabrication technologies to achieve flexible and stretchable. Then self-powered flexible microsystems are introduced and application examples are presented, including TENG-based active sensors, TENG-powered actuators, artificial intelligence and integrated systems.

Table of Contents

Preface xv

Part I Fundamentals of Triboelectric Nanogenerator 1

1 Overview of Triboelectric Nanogenerators 3
Xiaosheng Zhang

1.1 Energy Crisis of Microsystems 3

1.2 Microenergy Technologies 5

1.2.1 Photovoltaic Effect 7

1.2.2 Thermoelectric Effect 7

1.2.3 Electromagnetic Effect 8

1.2.4 Piezoelectric Effect 8

1.3 Triboelectric Nanogenerators 9

1.3.1 Principle of Triboelectric Nanogenerators 9

1.3.2 Key Factor: Triboelectric Series 11

1.3.3 Material Progress of Triboelectric Nanogenerators 11

1.3.4 Challenges of Triboelectric Nanogenerators 14

1.4 Summary 14

Abbreviations 15

References 15

2 Structures of Triboelectric Nanogenerators 19
Haixia Zhang

2.1 Operation Mechanisms of TENGs 19

2.1.1 Contact-Separation (CS) Mode 21

2.1.2 Relative-Sliding (RS) Mode 21

2.1.3 Single-Electrode (SE) Mode 22

2.1.4 Freestanding (FS) Mode 22

2.2 Typical Structures of TENGs 24

2.2.1 Plane-Shaped TENGs 24

2.2.2 Arch-Shaped TENGs 26

2.2.3 Zig-Zag-Shaped TENGs 30

2.2.4 Wavy-Shaped TENGs 33

2.2.5 Tank-Shaped TENGs 33

2.2.6 Rotor-Shaped TENGs 33

2.3 Summary 37

Abbreviations 37

References 38

3 Fabrication of Triboelectric Nanogenerators 41
Bo Meng

3.1 Mass Fabrication Technologies for Triboelectric Nanogenerators 41

3.1.1 Soft Lithography 41

3.1.2 Flexible Printed Circuit Manufacture 44

3.1.3 Roll-to-Roll Manufacture 45

3.1.4 3D Printing 46

3.1.5 Textile Manufacture 49

3.2 Performance Enhancement for Triboelectric Nanogenerators 50

3.2.1 Plasma Treatment 51

3.2.2 Wrinkle-Structured Surface 51

3.2.3 Chemical Synthesis 53

3.3 Summary 54

Abbreviations 55

References 55

4 Characterization of Triboelectric Nanogenerators 59
Yu Song

4.1 Electrical Operating Cycles of Triboelectric Nanogenerators 60

4.1.1 V-Q Plot and Its Characteristics 60

4.1.2 Operating Cycles of Energy Output 61

4.1.3 Measurements of Operating Cycles 64

4.2 Standard and Figure of Merits for Quantifying Triboelectric Nanogenerators 66

4.2.1 Figure of Merits of Triboelectric Nanogenerators 66

4.2.2 Structural Figure of Merits of Triboelectric Nanogenerators 67

4.2.3 Material Figure of Merit for Triboelectric Nanogenerators 70

4.3 Summary 73

Abbreviations 74

References 74

5 Power Management of Triboelectric Nanogenerators 77
Xiaoliang Cheng

5.1 Theoretical Analysis of Power Transmittance of TENGs 77

5.1.1 Resistive Load Characteristics of TENGs 78

5.1.2 Capacitive Load Characteristics of TENGs 78

5.2 The Progress in TENG Power Management 81

5.2.1 Using Inductive Transformers 81

5.2.2 Using Capacitive Transformers 82

5.2.3 Using LC Oscillation Circuit 83

5.3 Summary 90

Abbreviations 90

References 91

Part II Approaches to Flexible and Stretchable Device 95

6 Overview of Flexible and Stretchable Approaches 97
Mengdi Han

6.1 Intrinsically Flexible or Stretchable Materials 97

6.1.1 Nanomaterials in Different Dimensions 97

6.1.2 Organic Materials 100

6.1.3 Other Materials 102

6.2 Structural Designs for Flexible and Stretchable Electronics 103

6.2.1 Structural Design for Flexible Electronics 103

6.2.2 2D Structural Design for Stretchable Electronics 105

6.2.3 3D Structural Design for Stretchable Electronics 107

6.3 Summary 107

Abbreviations 107

References 108

7 Flexible and Stretchable Devices from 0D Nanomaterials 113
Zongming Su

7.1 0D Nanomaterials 114

7.1.1 Quantum Dots 114

7.1.2 Carbon Quantum Dots 115

7.1.3 Gold Nanoparticles 116

7.2 Thin Films Using 0D Nanomaterials 117

7.2.1 Casting 117

7.2.2 Dip Coating 118

7.2.3 Langmuir-Blodgett Deposition 120

7.3 Patterning Methods and Applications 121

7.3.1 Screen Printing 121

7.3.2 Inkjet Printing 121

7.3.3 Microcontact Printing 122

7.4 Applications of 0D Nanomaterials 123

7.4.1 Electrodes 124

7.4.2 Light-Emitting Diodes 125

7.4.3 Transistors 125

7.5 Summary 128

Abbreviations 128

References 129

8 Flexible and Stretchable Devices from 1D Nanomaterials 133
Liming Miao

8.1 Carbon Nanotubes 133

8.1.1 Fabrication Methods for CNTs 133

8.1.1.1 CNT-Based Bulk Materials 134

8.1.1.2 CNT-Based Surface Materials 134

8.1.2 Application of CNTs 136

8.2 ZnO Nanowires 138

8.2.1 Synthesis of ZnO Nanowires 139

8.2.2 Applications of ZnO Nanowires 141

8.3 Ag Nanowires 142

8.3.1 Fabrication Methods for Ag Nanowires 142

8.3.2 Applications of Ag Nanowires 143

8.4 Summary 145

Abbreviations 145

References 146

9 Flexible and Stretchable Devices from 2D Nanomaterials 149
Jinxin Zhang

9.1 2D Nanomaterials 149

9.1.1 Graphene 150

9.1.2 TMDs 151

9.1.3 Boron Nitride 151

9.2 Synthesis of Graphene 152

9.2.1 Micromechanical Exfoliation 152

9.2.2 Epitaxial Growth 153

9.2.3 Chemical Exfoliation 153

9.3 Graphene Transfer 154

9.3.1 Mechanical Exfoliation 154

9.3.2 Polymer-Assisted Transfer 154

9.3.3 Roll-to-Roll Transfer 156

9.3.4 “Transfer-Free” Method 156

9.4 Applications of Graphene 157

9.4.1 Flexible and Stretchable Transparent Electrodes 157

9.4.2 Nanogenerators 158

9.5 Summary 160

Abbreviations 161

References 161

10 Flexible and Stretchable Devices from Unconventional 3D Structural Design 165
Hangbo Zhao and Mengdi Han

10.1 Stretchable 3D Ribbon and Membrane Structures Formed by Basic Buckling 165

10.1.1 3D Nanoribbons 166

10.1.2 3D Nanomembranes 167

10.1.3 3D Bridge-Island Structures 167

10.2 Deterministic 3D Assembly 167

10.2.1 Basic Approach of Deterministic 3D Assembly 169

10.2.2 3D Kirigami Structure in Micro-/Nanomembranes 172

10.2.3 Buckling Control Assisted by Stress and Strain Engineering 172

10.2.4 Multilayer 3D Structures 173

10.2.5 Freestanding 3D Structures 175

10.2.6 Morphable 3D Structures by Multistable Buckling Mechanics 176

10.3 Flexible and Stretchable Devices from 3D Assembly 177

10.3.1 Electronic Devices and Systems 177

10.3.2 Optical and Optoelectronic Devices 177

10.3.3 Scaffolds as Interfaces with Biological Systems 178

10.4 Summary 180

Abbreviations 181

References 181

11 Flexible and Stretchable Devices from Other Materials 183
Haotian Chen

11.1 Polymer-Based Conductive Materials 183

11.1.1 PANI 184

11.1.2 PPy 185

11.1.3 PEDOT : PSS 185

11.1.4 Organic Nanowires 185

11.2 Composite-Based Conductive Materials 189

11.2.1 Conductive Fillers Blended into Stretchable Elastomers 189

11.2.2 Conductive Film Embedded into Stretchable Elastomer 191

11.3 Textile-Based Conductive Materials 195

11.3.1 Fiber-Based Conductive Materials 195

11.3.2 Textile-Based Conductive Materials 196

11.4 Summary 199

Abbreviations 199

References 200

Part III Self-Powered Smart System 203

12 Active Sensors 205
Xuexian Chen

12.1 Active Touch Sensors 205

12.1.1 Static and Dynamic Pressure Sensor 206

12.1.2 Tactile Imaging Sensor 206

12.1.3 Single-Electrode Touch Sensor 207

12.2 Active Vibration Sensors 210

12.2.1 Vibration Sensor for Quantitative Amplitude Measurement 210

12.2.2 Vibration Acceleration Sensor 212

12.2.3 Vibration Direction Sensor 213

12.2.4 Acoustic Sensor 213

12.3 Active Motion Sensors 215

12.3.1 Linear Displacement Sensor 215

12.3.2 Angle Sensor 217

12.3.3 Omnidirectional Tilt Sensor 217

12.4 Active Chemical/Environmental Sensors 219

12.4.1 Chemical Sensor 219

12.4.2 UV Sensor 221

12.5 Summary 222

Abbreviations 222

References 223

13 Hybrid Sensing Technology 227
Xiaosheng Zhang, Yanyuan Ba, and Mengdi Han

13.1 Dual Hybrid Power Technology 227

13.1.1 Triboelectric-Piezoelectric Nanogenerator 228

13.1.2 Triboelectric-Photovoltaic Nanogenerator 231

13.1.3 Triboelectric-Electromagnetic Nanogenerator 233

13.2 Multiple Hybrid Power Technology 234

13.2.1 Triple Hybrid Generators 234

13.2.2 Four-Mechanism Hybrid Generators 235

13.3 Hybrid Sensors and Applications 238

13.3.1 Piezoelectric-Triboelectric Hybrid Sensors 239

13.3.2 Electromagnetic-Triboelectric Hybrid Sensors 242

13.3.3 Multiple Hybrid Sensors 247

13.4 Summary 249

Abbreviations 250

References 251

14 Smart Actuators 253
Xiaosheng Zhang and Zhaohui Wu

14.1 Actuators in Optics 254

14.1.1 Laser Controller 254

14.1.2 Tunable Optical Membranes 258

14.2 Actuators in Biomedicine 261

14.2.1 Bladder Illness Curation 261

14.2.2 Drug Delivery 264

14.3 Actuators in Industrial Application 267

14.3.1 Electrospinning System 268

14.3.2 Syringe Printing 270

14.4 Actuators in Microfluidic Manipulation 272

14.4.1 Droplet Motion Drive 272

14.4.2 Microfluidic Transport 274

14.5 Summary 276

Abbreviations 276

References 277

15 Flexible and Stretchable Electronic Skin 281
Mayue Shi and Hanxiang Wu

15.1 Design of Electronic Skin 281

15.2 Electronic Skin for Mechanical Sensing 285

15.2.1 Pressure Sensing 285

15.2.2 Sliding Sensing 288

15.2.3 Bending Sensing 288

15.2.4 Location Sensing 289

15.2.5 Strain Sensing 290

15.3 Electronic Skin for Physiological Sensing 294

15.3.1 Multimodal Sensing 294

15.3.2 Physiological Monitoring 296

15.3.3 Signal Transmission 298

15.3.4 Reliability 298

15.4 Summary 301

Abbreviations 301

References 302

Part IV Applications of Flexible and Stretchable Self-Powered Smart System 305

16 All-in-One Self-Powered Microsystems 307
Xiaosheng Zhang and Danliang Wen

16.1 All-in-One Energy Harvester 308

16.1.1 One-Structural Triple-mechanism Energy Harvester 309

16.1.2 One-Structural Flexible Energy Harvester 310

16.1.3 One-Structural Multi-mechanism Energy Harvester 312

16.2 All-in-One Power Unit 316

16.2.1 Connection of TENGs and Traditional Circuits 316

16.2.2 Integration of TENGs and Flexible Supercapacitors 320

16.3 All-in-One Self-Powered Microsystems 326

16.3.1 All-Fiber-Based Self-Powered Microsystem 326

16.3.2 All-in-One Self-charging Smart Bracelet 326

16.3.3 Other Research of All-in-One Self-Powered Microsystems 327

16.4 Summary 335

Abbreviations 335

References 336

17 Applications in Biomedical Systems 339
Cunman Liang and Mengdi Han

17.1 Power Sources of Implantable Medical Devices 340

17.1.1 Power Source for Pacemakers 340

17.1.2 Power Source for Medical Lasers 342

17.1.3 Hybrid Power Source for Medical Applications 344

17.2 Active Monitoring 345

17.2.1 Nanogenerators for Cardiac Monitoring 345

17.2.2 Multifunctional Real-Time Monitoring 347

17.2.3 Versatile Energy Conversion and Monitoring 350

17.2.4 Self-Powered Wireless Body Sensor Network 352

17.3 Self-Powered System for Electric Stimulation in Tissue Engineering 353

17.3.1 Self-Powered Electrical-Stimulation-Assisted Neural Differentiation System 353

17.3.2 Biodegradable TENG for in Vivo Short-Term Stimulation 354

17.3.3 Absorbable Bioresorbable in Vivo Natural-Materials-Based TENGs 355

17.4 Summary 356

Abbreviations 357

References 357

18 Applications in Internet of Things and Artificial Intelligence 359
Mayue Shi and Hanxiang Wu

18.1 Applications in Internet of Things 359

18.1.1 Internet of Things 359

18.1.2 Self-Powered Sensing Nodes 360

18.1.3 Wireless Communication 363

18.1.4 Power Management Circuit 364

18.2 Applications in Artificial Intelligence 367

18.2.1 Artificial Intelligence 367

18.2.2 Electronic Skin 368

18.2.3 Robotic Prosthetics 371

18.2.4 Human-Machine Interfaces 374

18.3 Summary 376

Abbreviations 376

References 377

19 Applications in Environmental Monitoring/Protection 379
Hang Guo and Wei Tang

19.1 Self-powered EnvironmentalMonitoring System 379

19.1.1 Phenol Detection 380

19.1.2 Dopamine Detection 382

19.1.3 Heavy Metal Ion Detection 383

19.2 Self-powered Environmental Protection 384

19.2.1 Degradation of AAB 384

19.2.2 Degradation of Methyl Orange (MO) System 384

19.2.3 Removing Fly Ash and SO2 385

19.2.4 Seawater Desalination (SD) and Electrolysis (SE) System 386

19.3 Self-powered Electrochemistry System 388

19.3.1 Water Electrolysis Units 388

19.3.2 Electrochemical Polymerization System 389

19.3.3 Electrochemical Reduction System 390

19.4 Self-powered Anticorrosion 391

19.4.1 Driven by Mechanical Energy 392

19.4.2 Driven by Wave Energy 393

19.5 Summary 394

Abbreviations 394

References 395

Index 399

Authors

Mengdi Han Xiaosheng Zhang Haixia Zhang