+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

LaQue's Handbook of Marine Corrosion. Edition No. 2. The ECS Series of Texts and Monographs

  • Book

  • 752 Pages
  • August 2022
  • John Wiley and Sons Ltd
  • ID: 5837799

The new edition of LaQue's classic text on marine corrosion, providing fully updated control engineering practices and applications

Extensively updated throughout, the second edition of La Que's Handbook of Marine Corrosion remains the standard single-source reference on the unique nature of seawater as a corrosive environment. Designed to help readers reduce operational and life cycle costs for materials in marine environments, this authoritative resource provides clear guidance on design, materials selection, and implementation of corrosion control engineering practices for materials in atmospheric, immersion, or wetted marine environments.

Completely rewritten for the 21st century, this new edition reflects current environmental regulations, best practices, materials, and processes, with special emphasis placed on the engineering, behavior, and practical applications of materials. Divided into three parts, the book first explains the fundamentals of corrosion in marine environments, including atmospheric corrosion, erosion, microbiological corrosion, fatigue, environmental cracking, and cathodic delamination. The second part discusses corrosion control methods and materials selection that can mitigate or eliminate corrosion in different marine environments. The third section provides the reader with specific applications of corrosion engineering to structures, systems, or components that exist in marine environments.

This much-needed new edition:

  • Presents a comprehensive and up-to-date account of the science and engineering aspects of marine corrosion
  • Focuses on engineering aspects, descriptive behavior, and practical applications of materials usage in marine environments
  • Addresses the various materials used in marine environments, including metals, polymers, alloys, coatings, and composites
  • Incorporates current regulations, standards, and recommended practices of numerous organizations such as ASTM International, the US Navy, the American Bureau of Shipping, the International Organization for Standardization, and the International Maritime Organization

Written in a clear and understandable style, La Que's Handbook of Marine Corrosion, Second Edition is an indispensable resource for engineers and materials scientists in disciplines spanning the naval, maritime, commercial, shipping industries, particularly corrosion engineers, ship designers, naval architects, marine engineers, oceanographers, and other professionals involved with products that operate in marine environments.

Table of Contents

List of Contributors xix

Preface xxi

1 The Nature of Marine Environments 1
Bopinder Phull

1.1 Introduction 1

1.2 Seawater Chemistry 2

1.2.1 Chemical Composition of Seawater 2

1.2.1.1 Role of Ions 3

1.2.1.2 Dissolved Gases 5

1.2.1.3 Scale-Forming Compounds 8

1.2.1.4 Suspended Matter 9

1.2.1.5 pH 10

1.2.1.6 Chlorination 10

1.3 Physical 11

1.3.1 Temperature 11

1.3.2 Electrolytic Resistivity of Seawater 13

1.3.3 Velocity Effects 14

1.3.4 Effects of Depth 17

1.3.5 Splash and Tidal Zones 18

1.3.6 Bottom Sediments 20

1.4 Biological Effects 21

1.4.1 Microorganisms, Biofilms, and Biofouling 21

1.5 Testing 24

References 25

2 Electrochemistry and Forms of Corrosion 29
David A. Shifler

2.1 Introduction 29

2.2 Corrosion Thermodynamics 30

2.3 Corrosion Kinetics 30

2.4 Passivity 33

2.5 Corrosion Mechanistic Modes 34

2.5.1 Stray Current Corrosion 35

2.5.2 Galvanic Corrosion 35

2.5.3 Crevice Corrosion 37

2.5.4 Pitting 38

2.5.5 Intergranular Corrosion 38

2.5.6 Microbiological-Influenced Corrosion 40

2.5.7 Dealloying 41

2.5.8 Flow-Influenced Corrosion 42

2.6 Environmentally Induced Cracking 43

2.6.1 Stress Corrosion Cracking 43

2.6.2 Fatigue and Corrosion Fatigue 44

2.6.3 High-Temperature Corrosion 45

2.7 Factors Influencing Corrosion 46

References 47

3 Atmospheric Corrosion in Marine Environments 49
David G. Enos

3.1 Introduction 49

3.2 Understanding the Environment (Important Factors) 49

3.2.1 Humidity 51

3.2.2 Temperature 53

3.2.3 Solid and Liquid Contaminants (Salt Particulates, Seawater Aerosol, Dust, etc.) 53

3.2.4 Gaseous Contaminants 55

3.2.5 Physical Environment 55

3.3 Basic Electrochemistry of Atmospheric Corrosion 57

3.4 Corrosion Testing 59

3.4.1 Accelerated Testing 59

3.4.2 Long-Term Field Testing 59

3.5 Modeling 59

3.6 Summary 60

Acknowledgment 60

References 60

4 Localized Corrosion 63
David A. Shifler

4.1 Introduction 63

4.2 Pitting 63

4.2.1 Cast Irons 65

4.2.2 Carbon Steels 66

4.2.3 Stainless Steels 66

4.2.4 Nickel Alloys 69

4.2.5 Aluminum Alloys 72

4.2.6 Copper Alloys 73

4.2.7 Titanium Alloys 77

4.3 Crevice Corrosion 78

4.3.1 Cast Irons 81

4.3.2 Carbon Steels 82

4.3.3 Stainless Steels 82

4.3.4 Nickel Alloys 86

4.3.5 Aluminum Alloys 89

4.3.6 Copper Alloys 91

4.3.7 Titanium Alloys 92

4.4 Intergranular Corrosion 93

4.4.1 Cast Irons 94

4.4.2 Carbon Steels 94

4.4.3 Stainless Steels 95

4.4.4 Nickel Alloys 97

4.4.5 Aluminum Alloys 98

4.4.6 Copper Alloys 101

4.4.7 Titanium Alloys 102

4.5 Dealloying 102

4.5.1 Cast Irons 103

4.5.2 Carbon Steels 104

4.5.3 Stainless Steels 104

4.5.4 Nickel Alloys 104

4.5.5 Aluminum Alloys 104

4.5.6 Copper Alloys 105

4.5.7 Titanium Alloys 108

References 108

Further Reading 121

5 Galvanic Corrosion 123
Roger Francis

5.1 Introduction 123

5.2 Conditions Necessary for Galvanic Corrosion 124

5.3 Factors Affecting Galvanic Corrosion 125

5.3.1 Electrode Potential 125

5.3.2 Potential Variability 126

5.3.3 Electrode Efficiency 127

5.3.4 Electrolyte 129

5.3.5 Area Ratio 129

5.3.6 Aeration and Flow Rate 132

5.3.7 Metallurgical Condition and Composition 133

5.3.8 Stifling Effects 134

5.4 Alloy Groups 135

5.4.1 Group 1 Alloys 136

5.4.2 Group 2 Alloys 136

5.4.3 Group 3 Alloys 138

5.4.4 Group 4 Alloys 140

5.5 Marine Atmospheres 142

5.5.1 Factors Affecting Atmospheric Corrosion 142

5.5.2 Materials Compatibility 143

5.5.3 Atmospheric Variability 145

5.5.4 Tropical Atmospheres 145

5.6 Methods of Prevention 147

5.6.1 Materials 147

5.6.2 Insulation and Separation 147

5.6.3 Painting/Coatings 148

5.6.4 Cathodic Protection (CP) 149

5.6.5 Inhibitors 150

5.7 Design 150

References 151

6 The Effects of Turbulent Flow on Corrosion in Seawater 155
K. Daniel Efird

6.1 Introduction 155

6.1.1 Evaluating Flow Effects 155

6.2 The Basics of Turbulent Flow and Corrosion 156

6.2.1 The Nature of Turbulent Flow 156

6.2.2 Disturbed Flow 159

6.3 Erosion-Corrosion 159

6.3.1 Cavitation Corrosion 160

6.4 Flow Effects for Specific Materials 161

6.4.1 Carbon and Low Alloy Steels and Cast Irons 161

6.4.2 Copper Alloys 162

6.4.3 Passive Alloys 163

6.5 Flow Effects in Specific Facility Applications 164

6.A Wall Shear Stress and Mass Transfer Coefficient Defined 167

6.A.1 Wall Shear Stress 167

6.A.2 Mass Transfer Coefficient 168

6.A.3 Interrelationship of Mass Transfer Coefficient and Wall Shear Stress 168

6.B University of Tulsa Erosion Model 169

References 169

7 Biological Fouling and Corrosion Processes 173
Brenda J. Little and Jason S. Lee

7.1 Introduction 173

7.2 Development of Marine Fouling 174

7.2.1 Microfouling 174

7.2.2 Macrofouling 176

7.3 Influence of Marine Fouling on Corrosion 177

7.3.1 Corrosion Mechanisms Related to Generic Properties of Fouling Organisms 177

7.3.1.1 Oxygen Concentration Cells 177

7.3.1.2 Ennoblement 178

7.3.1.3 Galvanic Corrosion 178

7.3.2 Reactions Attributed to Specific Groups of Bacteria and Archaea 179

7.3.2.1 Sulfate Reduction 179

7.3.2.2 Sulfide Reactions with Specific Metals 179

7.3.2.3 Acid Production 181

7.3.2.4 Microbial Oxidation/Reduction of Iron 181

7.4 Diagnosis 182

7.5 Control and Prevention 182

7.5.1 Coatings 183

7.5.2 Biocidal Treatments 183

7.5.3 Cathodic Protection 183

7.5.4 Deoxygenation 184

7.5.5 Flow 185

7.6 Commentary 185

References 186

8 Marine Biofouling 191
Simone Dürr, Robert Edyvean, and Eleanor Ramsden-Lister

8.1 What Is Biofouling? 191

8.2 Development of Biofouling on New Artificial Surfaces 192

8.2.1 Macromolecules (Conditioning Film) 192

8.2.2 Bacteria 192

8.2.3 Diatoms, Protozoans 195

8.2.4 Larvae and Spores 195

8.3 Established Biofouling Communities 197

8.4 The Effect of Biofouling on the Corrosion of Metals in the Marine Environment 199

8.5 Past and Present Antifouling Strategies on Metals Used in the Marine Environment 201

8.5.1 Tributyltin (TBT) Self-Polishing Copolymer Paints 201

8.5.2 Controlled Depletion Polymers (CDPs)/Self-Polishing Containing Biocides and Booster Biocides 201

8.5.3 Foul Release Coatings 202

8.5.4 Electrochemical Control 203

8.5.5 Electrochlorination 204

8.5.6 Ultrasonics for Antifouling 204

8.5.7 Mechanical Cleaning and Prevention 205

8.5.8 Enzymes 205

8.5.9 Biomimetics and Bioinspiration 206

8.6 Conclusion 206

References 207

9 Environmentally Enhanced Fatigue 215
James Burns

9.1 Introduction 215

9.2 Precorrosion Effects 218

9.3 Loading Environment Effects 221

9.4 Crack Initiation 221

9.5 Crack Propagation 223

9.5.1 Aluminum 223

9.5.2 Titanium 225

9.5.3 Steel 226

9.6 Effect of Corrosion Mitigation Techniques on Fatigue 230

9.7 Conclusion 231

References 232

10 Effects of Stress - Environment Assisted Cracking 239
John R. Scully

10.1 Introduction 239

10.2 High-Strength Steels 242

10.2.1 Physical Metallurgy 242

10.2.2 General Susceptibility Trends 243

10.2.3 Dependence on Applied Potential 245

10.3 Stainless Steels 249

10.3.1 Physical Metallurgy 249

10.3.2 General Susceptibility Trends 251

10.3.3 Dependence on Applied Potential 254

10.4 Precipitation Hardened Stainless Steels 254

10.4.1 Physical and Mechanical Metallurgy of Precipitation Hardened Stainless Steel 254

10.4.2 General Susceptibility Trends 255

10.4.3 Effect of Applied Potential 260

10.5 Titanium Alloys 261

10.5.1 Physical Metallurgy 261

10.5.2 General Susceptibility Trends 263

10.5.3 Effect of Potential 264

10.6 High-Strength Aluminum Alloys 266

10.6.1 Physical Metallurgy 266

10.6.2 General Susceptibility Trends 268

10.6.3 Effects of Potential 271

10.7 Nickel Base Alloys 272

10.7.1 Physical Metallurgy 272

10.7.2 General Susceptibility Trends 273

10.7.2.1 Effects of Applied Potential 277

10.8 Copper, Copper Alloys, and Aluminum Bronze Alloys 277

10.8.1 Physical Metallurgy 277

10.8.2 General Susceptibility Trends 278

10.9 Magnesium Alloys 279

10.9.1 Physical Metallurgy 279

10.9.2 General Susceptibility Trends and Effects of Potential 279

References 280

11 Cathodic Delamination 291
Thomas Ramotowski

11.1 Introduction 291

11.2 Mechanisms for Cathodic Delamination 293

11.3 Cathodic Delamination Mitigation Strategies 296

References 298

12 High Temperature Corrosion in Marine Environments 301
David A. Shifler

12.1 Introduction 301

12.1.1 High Temperature Corrosion and Degradation Processes 301

12.2 Boilers 302

12.3 Diesel Engines 306

12.4 Gas Turbine Engines 309

12.4.1 High-Temperature Coatings 317

12.4.2 Factors Affecting Operational Life 319

12.5 Incinerators 319

12.6 Fuels 324

References 328

13 Design for Corrosion Control in Marine Environments 335
David A. Shifler

13.1 Introduction 335

13.2 General Design Approach 336

13.3 Corrosion Control Design Choices for Marine Structures 339

13.3.1 Materials 339

13.3.2 Organic Coatings 339

13.3.3 Metallic Coatings 340

13.3.4 Cathodic Protection 341

13.3.5 Inhibitors 341

13.4 Structural Designs that Minimize Corrosion 342

13.5 Inspection to Evaluate Conformance to Design, Repair Criteria 345

13.6 Ship Design in Marine Environments 346

13.6.1 Military Ships and Assets 346

13.6.2 Commercial Ship Design 348

13.6.3 Cruise Ship Design 349

13.7 Offshore Structural Design in Marine Environments 350

13.8 Summary 351

References 351

Further Reading 353

Ships 353

Offshore Structures 354

14 Modeling of Marine Corrosion Processes 355
Jason S. Lee, David G. Enos, Roger Francis, Sean Brossia, and David A. Shifler

14.1 Introduction 355

14.2 Computational Approaches 355

14.3 Assumptions in Modeling 356

14.4 Galvanic Corrosion 357

14.5 Localized Corrosion 359

14.5.1 Crevices 360

14.5.2 Cracks 363

14.5.3 Pitting 363

14.5.4 Intergranular Corrosion 364

14.6 General Corrosion 364

14.7 Atmospheric Corrosion Models 365

14.7.1 Holistic Atmospheric Corrosion Model 365

14.7.2 GILDES Model 366

14.8 Cathodic Protection 367

14.9 Recent Modeling Advances 369

14.9.1 Future Directions of DFT 370

14.10 Limitations and Future Needs 371

14.11 Summary 372

References 373

15 Marine Corrosion Testing 379
David A. Shifler and David G. Enos

15.1 Introduction 379

15.2 Corrosion Test Planning 379

15.3 Types of Corrosion Testing 381

15.3.1 Laboratory Testing 381

15.3.2 Salt Spray/Salt Fog Testing 383

15.3.2.1 Types of Salt Spray Environments 384

15.3.2.2 Limitations of Salt Spray Testing 385

15.3.3 Mixed Flowing Gas (MFG) Exposure Testing 386

15.3.4 Immersion Testing 389

15.3.5 Electrochemical Testing 393

15.3.5.1 Direct Current Electrochemical Methods 393

15.3.5.2 Nondestructive Electrochemical Methods 396

15.3.6 High Velocity Flow Testing 397

15.3.7 Environmental Cracking Test Methods 398

15.3.8 High Temperature Testing - Burner-Rigs 401

15.3.9 Molten Salt Tests 401

15.3.9.1 Thermogravimetric Analysis 402

15.3.10 Microbiological Tests 403

15.4 Field Evaluation 405

15.4.1 In-Service Testing 408

15.4.1.1 Simulated Service Testing 410

15.4.2 Standards for Seawater Testing 410

References 412

16 Nonmetallic Materials in Marine Service 421
Wayne Tucker

16.1 Introduction 421

16.2 Selection and Application 422

16.2.1 Material Definitions 422

16.2.2 Resistance to Environmental Factors 423

16.2.3 Mechanical and Physical Properties 423

16.3 Wood 424

16.3.1 Introduction 424

16.3.2 Degrading Factors 424

16.4 Plywood and Other Wood Composites 427

16.5 Concrete 428

16.5.1 Introduction 428

16.5.2 Marine Environmental Effects 429

16.5.3 Protection of Reinforced Concrete 430

16.5.4 Epoxy Coated Rebars (ECR) 431

16.5.5 Fiber Reinforced Concrete (FRC) 432

16.5.6 Repairs 432

16.6 Polymers 433

16.6.1 Fiber Reinforced Plastics (FRPs) 433

16.6.2 Environmental Effects 435

16.6.3 Fatigue of Marine Composites 436

16.6.4 Microbial Degradation 436

16.6.5 Ceramics and Glass 436

References 437

17 Electronics and Electrical Equipment in a Marine Environment 441
James A. Ellor

17.1 Introduction 441

17.2 Primary Corrosion Phenomena in a Marine Environment 442

17.2.1 Types of Corrosion 444

17.2.1.1 Galvanic Corrosion 444

17.2.1.2 Electrolytic Corrosion 445

17.2.1.3 Electrochemical Migration 445

17.3 Protection from the Environment 446

17.3.1 Conformal Coatings 446

17.3.2 Enclosures 447

17.3.3 Hermetic Seals 448

17.3.4 Dehumidification 448

17.3.5 Corrosion Inhibitors 449

17.3.6 Water-Displacing Compounds 449

17.4 Corrosion Testing for Electronics in a Marine Environment 449

17.5 Conclusions 450

References 451

18 Structural Alloys in Marine Service 453
David A. Shifler

18.1 Cast Irons 453

18.1.1 Cast Iron Metallurgy 454

18.1.2 Cast Iron Corrosion Behavior 457

18.2 Carbon Steels 458

18.2.1 Carbon Steel Chemistries 460

18.2.1.1 Effects of Alloying Additions 460

18.2.2 Surface Oxides/Corrosion Products 463

18.2.3 Heat Treating 464

18.2.4 Marine Steels 468

18.3 Stainless Steels 473

18.3.1 Stainless Steel Types 474

18.3.1.1 Austenitic Stainless Steels 474

18.3.1.2 Ferritic Stainless Steels 475

18.3.1.3 Martensitic Stainless Steels 478

18.3.1.4 Duplex Stainless Steels 478

18.3.1.5 Precipitation-Hardening Stainless Steels 479

18.3.2 Corrosion Behavior of Stainless Steels 479

18.3.3 Marine Uses of Stainless Steels 481

18.4 Nickel and Nickel Alloys 481

18.4.1 Corrosion Resistant Nickel and Nickel Alloys 483

18.4.2 High-temperature Nickel Alloys - Superalloys 486

18.5 Aluminum and Aluminum Alloys 490

18.5.1 Aluminum Alloy Familites 490

18.5.2 Heat Treatment of Aluminum Alloys 494

18.5.3 Corrosion Behavior of Aluminum Alloys 496

18.6 Copper and Copper Alloys 497

18.6.1 General Corrosion and Mechanical Properties 497

18.6.2 Bronze Alloys 498

18.6.3 Brasses 502

18.6.4 Copper-Nickel Alloys 503

18.7 Titanium and Titanium Alloys 506

18.7.1 Chemistry and Metallurgy of Titanium Alloys 507

18.7.2 General Corrosion Behavior 510

18.8 Factors Affecting Alloy Corrosion Behavior in Marine Service 510

18.8.1 Surface Properties and Processes 510

18.8.1.1 Passivity 510

18.8.2 Material Bulk Properties 513

18.8.3 Joining Effects on Materials 514

18.8.4 Cathodic Protection 518

References 518

Additional Reading and References 525

19 Marine Coatings 527
Charles G. Munger, Louis Vincent, and David A. Shifler

19.1 Introduction 527

19.2 Characteristics of a Ideal Marine Coating 528

19.3 Coating Degradation and Failures 532

19.4 Surface Preparation 532

19.5 Coating Inspection, Selection, and Application for Controlling Corrosion 536

19.6 Coatings for Marine Service 539

19.6.1 Metallized Coatings 539

19.6.1.1 Metal-Containing Primers 542

19.6.1.2 Cadmium Plating 543

19.6.1.3 Cadmium Options 543

19.6.2 Organic Coatings 544

19.6.2.1 Coating Thickness Measurements 544

19.7 Types of Coatings for Marine Vessels 545

19.7.1 Conversion Coatings 547

19.7.1.1 Hexavalent Chromate Conversion Coatings 547

19.7.1.2 Hexavalent Chromate Alternatives 547

19.7.1.3 Phosphate Coatings 548

19.7.2 Organic Coatings and Nanocomposites 548

19.7.3 Shop Primers 549

19.7.4 Universal Primers 550

19.7.5 Zinc-Rich Coatings 550

19.7.6 Organic Primers 551

19.7.7 Tie-Coats 552

19.7.8 Abrasion Resistant Coatings 552

19.7.9 Cargo Tank Linings 553

19.7.9.1 Tank Lining Chemical Resistance 554

19.7.10 Bilge Coatings 554

19.7.11 Ballast Tank Linings 555

19.7.12 Cofferdam and Void Coatings 558

19.7.13 Potable Water Tank Linings 558

19.7.14 Cosmetic Finishes - Topside Area and Interior Living and Working Spaces 559

19.7.15 Deck Coatings - Including Heli-Deck Surfaces 560

19.7.16 Hull Coatings - Freeboard Area 562

19.7.17 Maintenance Painting Programs 563

19.8 Offshore Structures 563

References 565

20 Biofouling Control 573
David A. Shifler

20.1 The Nature of Biofouling 573

20.2 Fouling Effects on Ships 574

20.2.1 Control of Biofouling 576

20.2.1.1 Biocidal Antifoulant Coatings 576

20.3 Non-biocidal Antifoulant Methods and Coatings 579

20.4 Maintenance, Monitoring, and Testing 582

References 587

21 Cathodic Protection 593
James A. Ellor, David A. Shifler, and Robert A. Bardsley

21.1 Theory 593

21.2 Reference Cells 596

21.3 Methods of Applying Cathodic Protection 597

21.3.1 Cathodic Protection Using Sacrificial Anodes 597

21.3.2 Impressed Current Cathodic Protection (ICCP) 600

21.3.2.1 Impressed Current Anodes Materials 601

21.3.2.2 Sacrificial Anodes 602

21.3.2.3 Impressed Current Cathodic Protection 604

21.4 Design Basics 604

21.4.1 Calcareous Deposits and Impacts on Protection Criteria 605

21.4.2 Polarization Characteristics Over Time 607

21.4.3 Design Using Physical Scale Modeling 608

21.4.4 Computer-Assisted Design 609

21.4.5 Protective (Dielectric) Shields 609

21.4.6 Protection Current Requirements 610

21.4.7 Polarization Potential Criteria of Protection 611

21.4.8 Automated Control Systems 611

21.5 Cathodic Protection in Marine Service 612

21.5.1 Small Boats and Large Commercial and Marine Vessels 612

21.5.2 Offshore Structures 615

21.5.3 Bridges, Wharves, and Jetties 617

21.5.4 Marine Pipelines 621

21.6 Concerns with the Use of Cathodic Protection 623

21.6.1 Corrosion/Cathodic Protection Monitoring 624

References 626

22 Corrosion Monitoring in Seawater 633
Sean Brossia

22.1 Introduction 633

22.2 Electrochemical Methods 634

22.2.1 Linear Polarization Resistance 634

22.2.2 Potential Measurements 636

22.2.3 Electrochemical Impedance Spectroscopy 637

22.2.4 Electrochemical Noise 641

22.2.5 Electrochemical Frequency Modulation 641

22.2.6 Wirebeam/Multielectrode Array Methods 641

22.3 Non-Electrochemical Methods 644

22.4 Challenges 647

22.5 Applications 648

22.6 Summary and Conclusions 649

References 650

23 Marine Fasteners 653
David A. Shifler

23.1 Introduction 653

23.2 Failure Modes 654

23.3 General Fastener Design 655

23.4 Fastener Materials Selection 656

23.4.1 Standards and Specifications 656

23.4.2 Low-Alloy Steels 659

23.4.3 Stainless Steels 659

23.4.4 Aluminum Alloys 659

23.4.5 Copper Alloys 660

23.4.6 Nickel Alloys 660

23.4.7 Titanium Alloys 660

23.5 Fastener Behavior Above the Waterline 661

23.6 Fastener Behavior in Submerged, Below the Waterline 661

23.7 Corrosion Protection for Fasteners 662

References 663

Further Reading 666

24 Marine and Offshore Piping Systems 667
David A. Shifler

24.1 Piping Systems 667

24.1.1 Bilge System 667

24.1.2 Ballast System 667

24.1.3 Firefighting Systems 668

24.1.4 Drainage Systems 668

24.1.5 Fresh-Water Systems 668

24.1.6 Fuel and Flammable Liquid Piping 668

24.1.7 Ventilation Systems - Ships 669

24.1.8 Hydrocarbon Piping (Oil and Gas) 669

24.1.9 Vent System - Offshore 669

24.1.10 Flare System 669

24.1.11 Firewater Utility Piping 669

24.1.12 Risers 670

24.1.13 Subsea Piping 670

24.2 Piping System Design 671

24.3 Materials Selection 672

24.4 Failure Modes of Piping Systems 674

24.4.1 Uniform Corrosion 674

24.4.2 Pitting and Crevice Corrosion 675

24.4.3 Galvanic Corrosion 677

24.4.4 Abrasion 681

24.4.5 Erosion and Erosion Corrosion 681

24.4.6 Variable Temperature Swings 684

24.4.7 Wear and Impact 684

24.4.8 Fatigue 685

24.4.9 Water Hammer 685

24.5 Corrosion Control Methods 686

References 686

Further Reading 689

25 Corrosion Control and Preservation of Historic Marine Artifacts 691
David A. Shifler

25.1 Introduction 691

25.2 Basic Conservation Procedures 694

25.2.1 Laboratory Conservation Procedures 695

25.3 Degradation, Corrosion, and Conservation of Marine Artifacts 695

25.3.1 Corrosion and Conservation of Ferrous Alloys 696

25.3.2 Corrosion and Conservation of Other Metals and Alloys 700

25.3.2.1 Corrosion and Conservation of Copper Artifacts 701

25.3.2.2 Corrosion and Conservation of Silver Artifacts 701

25.3.3 Corrosion and Conservation of Lead, Tin, Pewter 702

References 703

Further Reading 705

Marine Archaeology Conservation 705

Index 707

Authors

David A. Shifler U.S. Department of the Navy, USA.