+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Physics and Chemistry of Interfaces. Edition No. 4

  • Book

  • 480 Pages
  • March 2023
  • John Wiley and Sons Ltd
  • ID: 5838468
Physics and Chemistry of Interfaces

Comprehensive textbook on the interdisciplinary field of interface science, fully updated with new content on wetting, spectroscopy, and coatings

Physics and Chemistry of Interfaces provides a comprehensive introduction to the field of surface and interface science, focusing on essential concepts rather than specific details, and on intuitive understanding rather than convoluted math. Numerous high-end applications from surface technology, biotechnology, and microelectronics are included to illustrate and help readers easily comprehend basic concepts.

The new edition contains an increased number of problems with detailed, worked solutions, making it ideal as a self-study resource. In topic coverage, the highly qualified authors take a balanced approach, discussing advanced interface phenomena in detail while remaining comprehensible. Chapter summaries with the most important equations, facts, and phenomena are included to aid the reader in information retention.

A few of the sample topics included in Physics and Chemistry of Interfaces are as follows: - Liquid surfaces, covering microscopic picture of a liquid surface, surface tension, the equation of Young and Laplace, and curved liquid surfaces - Thermodynamics of interfaces, covering surface excess, internal energy and Helmholtz energy, equilibrium conditions, and interfacial excess energies - Charged interfaces and the electric double layer, covering planar surfaces, the Grahame equation, and limitations of the Poisson-Boltzmann theory - Surface forces, covering Van der Waals forces between molecules, macroscopic calculations, the Derjaguin approximation, and disjoining pressure

Physics and Chemistry of Interfaces is a complete reference on the subject, aimed at advanced students (and their instructors) in physics, material science, chemistry, and engineering. Researchers requiring background knowledge on surface and interface science will also benefit from the accessible yet in-depth coverage of the text.

Table of Contents

1. Introduction
2. Liquid Surfaces
2.1 Microscopic Picture of a Liquid Surface
2.2 Surface Tension
2.3 Equation of Young and Laplace
2.3.1 Curved Liquid Surfaces
2.3.2 Derivation of Young?Laplace Equation
2.3.3 Applying the Young?Laplace Equation
2.4 Techniques to Measure Surface Tension
2.5 Kelvin Equation
2.6 Capillary Condensation
2.7 Nucleation Theory
2.8 Summary
2.9 Exercises
3. Thermodynamics of Interfaces
3.1 Thermodynamic Functions for Bulk Systems
3.2 Surface Excess
3.3 Thermodynamic Relations for Systems with an Interface
3.3.1 Internal Energy and Helmholtz Energy
3.3.2 Equilibrium Conditions
3.3.3 Location of Interface
3.3.4 Gibbs Energy and Enthalpy
3.3.5 Interfacial Excess Energies
3.4 Pure Liquids
3.5 Gibbs Adsorption Isotherm
3.5.1 Derivation
3.5.2 System of Two Components
3.5.3 Experimental Aspects
3.5.4 Marangoni Effect
3.6 Summary
3.7 Exercises
4. Charged Interfaces and the Electric Double Layer
4.1 Introduction
4.2 Poisson?Boltzmann Theory of Diffuse Double Layer
4.2.1 Poisson?Boltzmann Equation
4.2.2 Planar Surfaces
4.2.3 The Full One-Dimensional Case
4.2.4 The Electric Double Layer around a Sphere
4.2.5 Grahame Equation
4.2.6 Capacitance of Diffuse Electric Double Layer
4.3 Beyond Poisson?Boltzmann Theory
4.3.1 Limitations of Poisson?Boltzmann Theory
4.3.2 Stern Layer
4.4 Gibbs Energy of Electric Double Layer
4.5 Electrocapillarity
4.5.1 Theory
4.5.2 Measurement of Electrocapillarity
4.6 Examples of Charged Surfaces
4.7 Measuring Surface Charge Densities
4.7.1 Potentiometric Colloid Titration
4.7.2 Capacitances
4.8 Electrokinetic Phenomena: the Zeta Potential
4.8.1 Navier?Stokes Equation
4.8.2 Electro-Osmosis and Streaming Potential
4.8.3 Electrophoresis and Sedimentation Potential
4.9 Types of Potential
4.10 Summary
4.11 Exercises
5. Surface Forces
5.1 Van der Waals Forces between Molecules
5.2 Van der Waals Force between Macroscopic Solids
5.2.1 Microscopic Approach
5.2.2 Macroscopic Calculation ? Lifshitz Theory
5.2.3 Retarded Van der Waals Forces
5.2.4 Surface Energy and the Hamaker Constant
5.3 Concepts for the Description of Surface Forces
5.3.1 The Derjaguin Approximation
5.3.2 Disjoining Pressure
5.4 Measurement of Surface Forces
5.5 Electrostatic Double-Layer Force
5.5.1 Electrostatic Interaction between Two Identical Surfaces
5.5.2 DLVO Theory
5.6 Beyond DLVO Theory
5.6.1 Solvation Force and Confined Liquids
5.6.2 Non-DLVO Forces in Aqueous Medium
5.7 Steric and Depletion Interaction
5.7.1 Properties of Polymers
5.7.2 Force between Polymer-Coated Surfaces
5.7.3 Depletion Forces
5.8 Spherical Particles in Contact
5.9 Summary
5.10 Exercises
6. Contact Angle Phenomena and Wetting
6.1 Young?s Equation
6.1.1 Contact Angle
6.1.2 Derivation
6.1.3 Line Tension
6.1.4 Complete Wetting and Wetting Transitions
6.1.5 Theoretical Aspects of Contact Angle Phenomena
6.2 Important Wetting Geometries
6.2.1 Capillary Rise
6.2.2 Particles at Interfaces
6.2.3 Network of Fibers
6.3 Measurement of Contact Angles
6.3.1 Experimental Methods
6.3.2 Hysteresis in Contact Angle Measurements
6.3.3 Surface Roughness and Heterogeneity
6.3.4 Superhydrophobic Surfaces
6.4 Dynamics of Wetting and Dewetting
6.4.1 Spontaneous Spreading
6.4.2 Dynamic Contact Angle
6.4.3 Coating and Dewetting
6.5 Applications
6.5.1 Flotation
6.5.2 Detergency
6.5.3 Microfluidics
6.5.4 Electrowetting
6.6 Thick Films: Spreading of One Liquid on Another
6.7 Summary
6.8 Exercises
7. Solid Surfaces
7.1 Introduction
7.2 Description of Crystalline Surfaces
7.2.1 Substrate Structure
7.2.2 Surface Relaxation and Reconstruction
7.2.3 Description of Adsorbate Structures
7.3 Preparation of Clean Surfaces
7.3.1 Thermal Treatment
7.3.2 Plasma or Sputter Cleaning
7.3.3 Cleavage
7.3.4 Deposition of Thin Films
7.4 Thermodynamics of Solid Surfaces
7.4.1 Surface Energy, Surface Tension, and Surface Stress
7.4.2 Determining Surface Energy
7.4.3 Surface Steps and Defects
7.5 Surface Diffusion
7.5.1 Theoretical Description of Surface Diffusion
7.5.2 Measurement of Surface Diffusion
7.6 Solid?Solid Interfaces
7.7 Microscopy of Solid Surfaces
7.7.1 Optical Microscopy
7.7.2 Electron Microscopy
7.7.3 Scanning Probe Microscopy
7.8 Diffraction Methods
7.8.1 Diffraction Patterns of Two-Dimensional Periodic Structures
7.8.2 Diffraction with Electrons, X-Rays, and Atoms
7.9 Spectroscopic Methods
7.9.1 Optical Spectroscopy of Surfaces
7.9.2 Spectroscopy Using Mainly Inner Electrons
7.9.3 Spectroscopy with Outer Electrons
7.9.4 Secondary Ion Mass Spectrometry
7.10 Summary
7.11 Exercises
8. Adsorption
8.1 Introduction
8.1.1 Definitions
8.1.2 Adsorption Time
8.1.3 Classification of Adsorption Isotherms
8.1.4 Presentation of Adsorption Isotherms
8.2 Thermodynamics of Adsorption
8.2.1 Heats of Adsorption
8.2.2 Differential Quantities of Adsorption and Experimental Results
8.3 Adsorption Models
8.3.1 Langmuir Adsorption Isotherm
8.3.2 Langmuir Constant and Gibbs Energy of Adsorption
8.3.3 Langmuir Adsorption with Lateral Interactions
8.3.4 BET Adsorption Isotherm
8.3.5 Adsorption on Heterogeneous Surfaces
8.3.6 Potential Theory of Polanyi
8.4 Experimental Aspects of Adsorption from Gas Phase
8.4.1 Measuring Adsorption to Planar Surfaces
8.4.2 Measuring Adsorption to Powders and Textured Materials
8.4.3 Adsorption to Porous Materials
8.4.4 Special Aspects of Chemisorption
8.5 Adsorption from Solution
8.6 Summary
8.7 Exercises
9. Surface Modification
9.1 Introduction
9.2 Physical and Chemical Vapor Deposition
9.2.1 Physical Vapor Deposition
9.2.2 Chemical Vapor Deposition
9.3 Soft Matter Deposition
9.3.1 Self-Assembled Monolayers
9.3.2 Physisorption of Polymers
9.3.3 Polymerization on Surfaces
9.3.4 Plasma Polymerization
9.4 Etching Techniques
9.5 Lithography
9.6 Summary
9.7 Exercises
10. Friction, Lubrication, and Wear
10.1 Friction
10.1.1 Introduction
10.1.2 Amontons? and Coulomb?s Law
10.1.3 Static, Kinetic, and Stick-Slip Friction
10.1.4 Rolling Friction
10.1.5 Friction and Adhesion
10.1.6 Techniques to Measure Friction
10.1.7 Macroscopic Friction
10.1.8 Microscopic Friction
10.2 Lubrication
10.2.1 Hydrodynamic Lubrication
10.2.2 Boundary Lubrication
10.2.3 Thin-Film Lubrication
10.2.4 Superlubricity
10.2.5 Lubricants
10.3 Wear
10.4 Summary
10.5 Exercises
11. Surfactants, Micelles, Emulsions, and Foams
11.1 Surfactants
11.2 Spherical Micelles, Cylinders, and Bilayers
11.2.1 Critical Micelle Concentration
11.2.2 Influence of Temperature
11.2.3 Thermodynamics of Micellization
11.2.4 Structure of Surfactant Aggregates
11.2.5 Biological Membranes
11.3 Macroemulsions
11.3.1 General Properties
11.3.2 Formation
11.3.3 Stabilization
11.3.4 Evolution and Aging
11.3.5 Coalescence and Demulsification
11.4 Microemulsions
11.4.1 Size of Droplets
11.4.2 Elastic Properties of Surfactant Films
11.4.3 Factors Influencing the Structure of Microemulsions
11.5 Foams
11.5.1 Classification, Application, and Formation
11.5.2 Structure of Foams
11.5.3 Soap Films
11.5.4 Evolution of Foams
11.6 Summary
11.7 Exercises
12. Thin Films on Surfaces of Liquids
12.1 Introduction
12.2 Phases of Monomolecular Films
12.3 Experimental Techniques to Study Monolayers
12.3.1 Optical Microscopy
12.3.2 Infrared and Sum Frequency Generation Spectroscopy
12.3.3 X-Ray Reflection and Diffraction
12.3.4 Surface Potential
12.3.5 Rheologic Properties of Liquid Surfaces
12.4 Langmuir?Blodgett Transfer
12.5 Summary
12.6 Exercises
13. Solutions to Exercises
14. Analysis of Diffraction Patterns
14.1 Diffraction at Three-Dimensional Crystals
14.1.1 Bragg Condition
14.1.2 Laue Condition
14.1.3 Reciprocal Lattice
14.1.4 Ewald Construction
14.2 Diffraction at Surfaces
14.3 Intensity of Diffraction Peaks
Appendix A Symbols and Abbreviations
References
Index

Authors

Hans-Jürgen Butt MPI for Polymer Research, Germany. Karlheinz Graf MPI for Polymer Research, Germany. Michael Kappl MPI for Polymer Research, Germany.