+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

CMOS. Circuit Design, Layout, and Simulation. Edition No. 4. IEEE Press Series on Microelectronic Systems

  • Book

  • 1280 Pages
  • August 2019
  • John Wiley and Sons Ltd
  • ID: 5838742

A revised guide to the theory and implementation of CMOS analog and digital IC design

The fourth edition of CMOS: Circuit Design, Layout, and Simulation is an updated guide to the practical design of both analog and digital integrated circuits. The author - a noted expert on the topic - offers a contemporary review of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and switching power supplies.

CMOS includes discussions that detail the trade-offs and considerations when designing at the transistor-level. The companion website contains numerous examples for many computer-aided design (CAD) tools. Using the website enables readers to recreate, modify, or simulate the design examples presented throughout the book. In addition, the author includes hundreds of end-of-chapter problems to enhance understanding of the content presented. This newly revised edition:

•    Provides in-depth coverage of both analog and digital transistor-level design techniques

•    Discusses the design of phase- and delay-locked loops, mixed-signal circuits, data converters, and circuit noise

•    Explores real-world process parameters, design rules, and layout examples

•    Contains a new chapter on Power Electronics

Written for students in electrical and computer engineering and professionals in the field, the fourth edition of CMOS: Circuit Design, Layout, and Simulation is a practical guide to understanding analog and digital transistor-level design theory and techniques.

Table of Contents

Preface xxxiii

Chapter 1 Introduction to CMOS Design 1

1.1 The CMOS IC Design Process 1

1.1.1 Fabrication 2

1.2 CMOS Background 5

1.3 An Introduction to SPICE 8

Chapter 2 The Well 31

2.1 Patterning 32

2.1.1 Patterning the N-well 35

2.2 Laying Out the N-well 35

2.2.1 Design Rules for the N-well 36

2.3 Resistance Calculation 36

2.3.1 The N-well Resistor 38

2.4 The N-well/Substrate Diode 39

2.4.1 A Brief Introduction to PN Junction Physics 39

2.4.2 Depletion Layer Capacitance 42

2.4.3 Storage or Diffusion Capacitance 45

2.4.4 SPICE Modeling 46

2.5 The RC Delay through the N-well 48

2.6 Twin Well Processes 51

Chapter 3 The Metal Layers 59

3.1 The Bonding Pad 59

3.1.1 Laying Out the Pad I 60

3.2 Design and Layout Using the Metal Layers 63

3.2.1 Metal1 and Via1 63

3.2.2 Parasitics Associated with the Metal Layers 63

3.2.3 Current-Carrying Limitations 67

3.2.4 Design Rules for the Metal Layers 68

3.2.5 Contact Resistance 69

3.3 Crosstalk and Ground Bounce 70

3.3.1 Crosstalk 71

3.3.2 Ground Bounce 72

3.4 Layout Examples 74

3.4.1 Laying Out the Pad II 74

3.4.2 Laying Out Metal Test Structures 76

Chapter 4 The Active and Poly Layers 83

4.1 Layout Using the Active and Poly Layers 83

4.1.1 Process Flow 90

4.2 Connecting Wires to Poly and Active 93

4.3 Electrostatic Discharge (ESD) Protection 99

Chapter 5 Resistors, Capacitors, MOSFETs 107

5.1 Resistors 107

5.2 Capacitors 115

5.3 MOSFETs 118

5.4 Layout Examples 125

Chapter 6 MOSFET Operation 135

6.1 MOSFET Capacitance Overview/Review 136

6.2 The Threshold Voltage 139

6.3 IV Characteristics of MOSFETs 144

6.3.1 MOSFET Operation in the Triode Region 144

6.3.2 The Saturation Region 146

6.4 SPICE Modeling of the MOSFET 149

6.4.1 Some SPICE Simulation Examples 151

6.4.2 The Subthreshold Current 152

6.5 Short-Channel MOSFETs 154

6.5.1 MOSFET Scaling 155

6.5.2 Short-Channel Effects 156

6.5.3 SPICE Models for Our Short-Channel CMOS Process 157

Chapter 7 CMOS Fabrication by Jeff Jessing 165

7.1 CMOS Unit Processes 165

7.1.1 Wafer Manufacture 165

7.1.2 Thermal Oxidation 167

7.1.3 Doping Processes 168

7.1.4 Photolithography 170

7.1.5 Thin Film Removal 173

7.1.6 Thin Film Deposition 177

7.2 CMOS Process Integration 180

7.2.1 Frontend-of-the-Line Integration 182

7.2.2 Backend-of-the-Line Integration 196

7.3 Backend Processes 210

7.4 Advanced CMOS Process Integration 212

7.4.1 FinFETs 213

7.4.2 Dual Damascene Low-k/Cu Interconnects 216

7.5 Summary 219

Chapter 8 Electrical Noise: An Overview 221

8.1 Signals 221

8.1.1 Power and Energy 221

8.1.2 Power Spectral Density 223

8.2 Circuit Noise 226

8.2.1 Calculating and Modeling Circuit Noise 227

8.2.2 Thermal Noise 231

8.2.3 Signal-to-Noise Ratio 237

8.2.4 Shot Noise 247

8.2.5 Flicker Noise 251

8.2.6 Other Noise Sources 258

8.3 Discussion 260

8.3.1 Correlation 260

8.3.2 Noise and Feedback 264

8.3.3 Some Final Notes Concerning Notation 267

Chapter 9 Models for Analog Design 277

9.1 Long-Channel MOSFETs 277

9.1.1 The Square-Law Equations 279

9.1.2 Small Signal Models 286

9.1.3 Temperature Effects 300

9.2 Short-Channel MOSFETs 302

9.2.1 General Design (A Starting Point) 303

9.2.2 Specific Design (A Discussion) 306

9.3 MOSFET Noise Modeling 308

Chapter 10 Models for Digital Design 327

10.1 The Digital MOSFET Model 328

10.1.2 Process Characteristic Time Constant 331

10.1.3 Delay and Transition Times 333

10.1.4 General Digital Design 326

10.2 The MOSFET Pass Gate 326

10.2.1 Delay through a Pass Gate 338

10.2.2 Delay through Series-Connected PGs 340

10.3 A Final Comment Concerning Measurements 341

Chapter 11 The Inverter 347

11.1 DC Characteristics 347

11.2 Switching Characteristics 352

11.3 Layout of the Inverter 356

11.4 Sizing for Large Capacitive Loads 358

11.5 Other Inverter Configurations 364

Chapter 12 Static Logic Gates 369

12.1 DC Characteristics of the NAND and NOR Gates 369

12.1.1 DC Characteristics of the NAND Gate 369

12.1.2 DC Characteristics of the NOR Gate 372

12.2 Layout of the NAND and NOR Gates 373

12.3 Switching Characteristics 374

12.3.1 NAND Gate 375

12.3.2 Number of Inputs 378

12.4 Complex CMOS Logic Gates 379

Chapter 13 Clocked Circuits 389

13.1 The CMOS TG 389

13.2 Applications of the Transmission Gate 391

13.3 Latches and Flip-Flops 395

13.4 Examples 402

Chapter 14 Dynamic Logic Gates 411

14.1 Fundamentals of Dynamic Logic 411

14.1.1 Charge Leakage 411

14.1.2 Simulating Dynamic Circuits 414

14.1.3 Nonoverlapping Clock Generation 415

14.1.4 CMOS TG in Dynamic Circuits 416

14.2 Clocked CMOS Logic 417

Chapter 15 CMOS Layout Examples 425

15.1 Chip Layout 426

15.2 Layout Steps by Dean Moriarty 434

Chapter 16 Memory Circuits 445

16.1 Array Architectures 446

16.1.1 Sensing Basics 446

16.1.2 The Folded Array 452

16.1.3 Chip Organization 458

16.2 Peripheral Circuits 458

16.2.1 Sense Amplifier Design 458

16.2.2 Row/Column Decoders 467

16.2.3 Row Drivers 470

16.3 Memory Cells 471

16.3.1 The SRAM Cell 473

16.3.2 Read-Only Memory (ROM) 473

16.3.3 Floating Gate Memory 473

Chapter 17 Sensing Using Modulation 493

17.1 Qualitative Discussion 494

17.1.1 Examples of DSM 494

17.1.2 Using DSM for Sensing in Flash Memory 496

17.2 Sensing Resistive Memory 506

17.3 Sensing in CMOS Imagers 513

Chapter 18 Special Purpose CMOS Circuits 533

18.1 The Schmitt Trigger 533

18.1.1 Design of the Schmitt Trigger 534

18.1.2 Applications of the Schmitt Trigger 536

18.2 Multivibrator Circuits 538

18.2.1 The Monostable Multivibrator 539

18.2.2 The Astable Multivibrator 540

18.3 Input Buffers 541

18.3.1 Basic Circuits 541

18.3.2 Differential Circuits 543

18.3.3 DC Reference 547

18.3.4 Reducing Buffer Input Resistance 550

18.4 Charge Pumps (Voltage Generators) 551

18.4.1 Increasing the Output Voltage 553

18.4.2 Generating Higher Voltages: The Dickson Charge Pump 553

18.4.3 Example 556

Chapter 19 Digital Phase-Locked Loops 561

19.1 The Phase Detector 563

19.1.1 The XOR Phase Detector 563

19.1.2 The Phase Frequency Detector 567

19.2 The Voltage-Controlled Oscillator 570

19.2.1 The Current-Starved VCO 570

19.2.2 Source-Coupled VCOs 574

19.3 The Loop Filter 576

19.3.1 XOR DPLL 577

19.3.2 PFD DPLL 583

19.4 System Concerns 590

19.4.1 Clock Recovery from NRZ Data 593

19.5 Delay-Locked Loops 600

19.6 Some Examples 603

19.6.1 A 2 GHz DLL 603

19.6.2 A 1 Gbit/s Clock-Recovery Circuit 609

Chapter 20 Current Mirrors 621

20.1 The Basic Current Mirror 621

20.1.1 Long-Channel Design 622

20.1.2 Matching Currents in the Mirror 624

20.1.3 Biasing the Current Mirror 628

20.1.4 Short-Channel Design 634

20.1.5 Temperature Behavior 638

20.1.6 Biasing in the Subthreshold Region 642

20.2 Cascoding the Current Mirror 643

20.2.1 The Simple Cascode 643

20.2.2 Low-Voltage (Wide-Swing) Cascode 645

20.2.3 Wide-Swing, Short-Channel Design 648

20.2.4 Regulated Drain Current Mirror 651

20.3 Biasing Circuits 653

20.3.1 Long-Channel Biasing Circuits 653

20.3.2 Short-Channel Biasing Circuits 656

20.3.3 A Final Comment 657

Chapter 21 Amplifiers 671

21.1 Gate-Drain Connected Loads 671

21.1.1 Common-Source (CS) Amplifiers 671

21.1.2 The Source Follower (Common-Drain Amplifier) 683

21.1.3 Common Gate Amplifier 684

21.2 Current Source Loads 685

21.2.1 Common-Source Amplifier 685

21.2.2 The Cascode Amplifier 698

21.2.3 The Common-Gate Amplifier 702

21.2.4 The Source Follower (Common-Drain Amplifier) 702

21.3 The Push-Pull Amplifier 710

21.3.1 DC Operation and Biasing 711

21.3.2 Small-Signal Analysis 714

21.3.3 Distortion 716

Chapter 22 Differential Amplifiers 735

22.1 The Source-Coupled Pair 735

22.1.1 DC Operation 735

22.1.2 AC Operation 741

22.1.3 Common-Mode Rejection Ratio 745

22.1.4 Matching Considerations 746

22.1.5 Noise Performance 749

22.1.6 Slew-Rate Limitations 750

22.2 The Source Cross-Coupled Pair 750

22.2.1 Current Source Load 754

22.3 Cascode Loads (The Telescopic Diff-Amp) 756

22.4 Wide-Swing Differential Amplifiers 758

22.4.1 Current Differential Amplifier 760

22.4.2 Constant Transconductance Diff-Amp 760

Chapter 23 Voltage References 773

23.1 MOSFET-Resistor Voltage References 774

23.1.1 The Resistor-MOSFET Divider 774

23.1.2 The MOSFET-Only Voltage Divider 777

23.1.3 Self-Biased Voltage References 778

23.2 Parasitic Diode-Based References 784

23.2.1 Long-Channel BGR Design 787

23.2.2 Short-Channel BGR Design 795

Chapter 24 Operational Amplifiers I 803

24.1 The Two-Stage Op-Amp 804

24.2 An Op-Amp with Output Buffer 822

24.3 The Operational Transconductance Amplifier (OTA) 824

24.4 Gain-Enhancement 835

24.5 Some Examples and Discussions 839

Chapter 25 Dynamic Analog Circuits 857

25.1 The MOSFET Switch 857

25.1.1 Sample-and-Hold Circuits 861

25.2 Fully-Differential Circuits 864

25.2.1 A Fully-Differential Sample-and-Hold 866

25.3 Switched-Capacitor Circuits 869

25.3.1 Switched-Capacitor Integrator 871

25.4 Circuits 879

Chapter 26 Operational Amplifiers II 889

26.1 Biasing for Power and Speed 889

26.1.1 Device Characteristics 890

26.1.2 Biasing Circuit 891

26.2 Basic Concepts 892

26.3 Basic Op-Amp Design 900

26.4 Op-Amp Design Using Switched-Capacitor CMFB 920

Chapter 27 Nonlinear Analog Circuits 933

27.1 Basic CMOS Comparator Design 933

27.1.1 Characterizing the Comparator 939

27.1.2 Clocked Comparators 942

27.1.3 Input Buffers Revisited 943

27.2 Adaptive Biasing 943

27.3 Analog Multipliers 946

27.3.1 The Multiplying Quad 947

Chapter 28 Data Converter Fundamentals by Harry Li 955

28.1 Analog Versus Discrete Time Signals 955

28.2 Converting Analog Signals to Digital Signals 956

28.3 Sample-and-Hold (S/H) Characteristics 959

28.4 Digital-to-Analog Converter (DAC) Specifications 961

28.5 Analog-to-Digital Converter (ADC) Specifications 970

28.6 Mixed-Signal Layout Issues 979

Chapter 29 Data Converter Architectures by Harry Li 987

29.1 DAC Architectures 987

29.1.1 Digital Input Code 987

29.1.2 Resistor String 987

29.1.3 R-2R Ladder Networks 992

29.1.4 Current Steering 995

29.1.5 Charge-Scaling DACs 999

29.1.6 Cyclic DAC 1003

29.1.7 Pipeline DAC 1005

29.2 ADC Architectures 1006

29.2.1 Flash 1006

29.2.2 The Two-Step Flash ADC 1010

29.2.3 The Pipeline ADC 1014

29.2.4 Integrating ADCs 1018

29.2.5 The Successive Approximation ADC 1022

29.2.6 The Oversampling ADC 1027

Chapter 30 Implementing Data Converters 1043

30.1 R-2R Topologies for DACs 1043

30.1.1 The Current-Mode R-2R DAC 1044

30.1.2 The Voltage-Mode R-2R DAC 1045

30.1.3 A Wide-Swing Current-Mode R-2R DAC 1047

30.1.4 Topologies Without an Op-Amp 1057

30.2 Op-Amps in Data Converters 1063

30.2.1 Op-Amp Gain 1066

30.2.2 Op-Amp Unity Gain Frequency 1067

30.2.3 Op-Amp Offset 1067

30.3 Implementing ADCs 1070

30.3.1 Implementing the S/H 1071

30.3.2 The Cyclic ADC 1077

30.3.3 The Pipeline ADC 1084

Chapter 31 Feedback Amplifiers with Harry Li 1115

31.1 The Feedback Equation 1115

31.2 Properties of Negative Feedback on Amplifier Design 1117

31.2.1 Gain Desensitivity 1117

31.3 Recognizing Feedback Topologies 1120

31.3.1 Input Mixing 1121

31.3.2 Output Sampling 1121

31.3.3 The Feedback Network 1122

31.3.4 Calculating Open-Loop Parameters 1125

31.3.5 Calculating Closed-Loop Parameters 1127

31.4 The Voltage Amp (Series-Shunt Feedback) 1128

31.5 The Transimpedance Amp (Shunt-Shunt Feedback) 1134

31.5.1 Simple Feedback Using a Gate-Drain Resistor 1140

31.6 The Transconductance Amp (Series-Series Feedback) 1142

31.7 The Current Amplifier (Shunt-Series Feedback) 1146

31.8 Stability 1148

31.8.1 The Return Ratio 1151

31.9 Design Examples 1154

31.9.1 Voltage Amplifiers 1154

31.9.2 A Transimpedance Amplifier 1158

Chapter 32 Hysteretic Power Converters 1175

32.1 A Review of Power and Energy Basics 1176

32.1.1 Energy Storage in Inductors and Capacitors 1177

32.1.2 Energy Use in Transmitting Data 1180

32.1.3 Selection and use of Switches 1181

32.2 Switching Power Supplies: Some Examples 1189

32.2.1 The Buck SPS 1189

32.2.2 The Boost SPS 1196

32.2.3 The Flyback SPS 1200

32.2.4 Pulse Width Modulation: A Control Loop Example 1204

32.3 Hysteretic Control 1210

32.3.1 Topologies 1211

32.3.2 Examples 1212

Index 1219

About the Author 1235

Authors

R. Jacob Baker Boise State University, Micron Technology, Inc., Boise, Idaho.