+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Smart Grid and Enabling Technologies. Edition No. 1. IEEE Press

  • Book

  • 512 Pages
  • August 2021
  • John Wiley and Sons Ltd
  • ID: 5839180
SMART GRID AND ENABLING TECHNOLOGIES

Discover foundational topics in smart grid technology as well as an exploration of the current and future state of the industry

As the relationship between fossil fuel use and climate change becomes ever clearer, the search is on for reliable, renewable and less harmful sources of energy. Sometimes called the “electronet” or the “energy Internet,” smart grids promise to integrate renewable energy, information, and communication technologies with the existing electrical grid and deliver electricity more efficiently and reliably.

Smart Grid and Enabling Technologies delivers a complete vision of smart grid technology and applications, including foundational and fundamental technologies, the technology that enables smart grids, the current state of the industry, and future trends in smart energy. The book offers readers thorough discussions of modern smart grid technology, including advanced metering infrastructure, net zero energy buildings, and communication, data management, and networks in smart grids.

The accomplished authors also discuss critical challenges and barriers facing the smart grid industry as well as trends likely to be of importance in its future development. Readers will also benefit from the inclusion of: - A thorough introduction to smart grid architecture, including traditional grids, the fundamentals of electric power, definitions and classifications of smart grids, and the components of smart grid technology- An exploration of the opportunities and challenges posed by renewable energy integration- Practical discussions of power electronics in the smart grid, including power electronics converters for distributed generation, flexible alternating current transmission systems, and high voltage direct current transmission systems- An analysis of distributed generation

Perfect for scientists, researchers, engineers, graduate students, and senior undergraduate students studying and working with electrical power systems and communication systems. Smart Grid and Enabling Technologies will also earn a place in the libraries of economists, government planners and regulators, policy makers, and energy stakeholders working in the smart grid field.

Table of Contents

About the Authors

Acknowledgements

Preface

List of Abbreviations

- 1.      Smart Grid Architectural Overview

1.1   Introduction

1.2   Fundamentals of Electric Power system

1.2.1        Electrical Power Generation

1.2.2        Electric Power Transmission

1.2.3        Electric Power Distribution

1.3   More limitations of the traditional power grid

1.3.1        Lack of circuit capacity and aging assets

1.3.2        Operation Constrains

1.3.3        Security of Supply

1.3.4        Respond to national initiatives

1.4   Smart Grid Definition

1.5   Smart Grid Characteristics

1.5.1        Achieve flexibility in the network topology

1.5.2        Improved efficiency

1.5.3        Transportation Electrification

1.5.4        Demand response support

1.5.5        Improvement in Reliability and Power Quality

1.5.6        Market-enabling

1.6   Moving towards Future grid

1.6.1        Electrification

1.6.2        Decentralization

1.6.3        Digitalization

1.7   The transformation from the traditional grid to smart grid

1.8   Smart Grid Enabling Technologies

1.9   Smart Grid Architecture

1.9.1        Distributed Generation

1.9.2        Energy Storage

1.9.3        Demand Response

1.9.4        Integrated communications

1.9.4.1   Communication Networks

1.9.4.2   Power Line Communication (PLC)

1.9.4.3   Standardization

1.9.5        Customer Engagement

1.9.6        Sensors and PMU Units

1.9.7        Smart Meters

1.10Classification of Smart Grid Control

1.11Smart Grid Challenges

1.11.1     Accessibility and acceptability

1.11.2     Accountability

1.11.3     Controllability

1.11.4     Interoperability

1.11.5     Interchangeability

1.11.6     Maintainability

1.11.7     Optimality

1.11.8     Security

1.11.9     Upgradability

1.12Organization of the Book

- 2.      Renewable Energy: Overview, Opportunities and Challenges

2.1   Introduction

2.2   Description of Renewable Energy Sources

2.2.1        Bioenergy Energy

2.2.2        Geothermal Energy

2.2.3        Hydropower Energy

2.2.4        Marine Energy

2.2.5        Solar Energy

2.2.5.1   Photovoltaic

2.2.5.2   Concentrated Solar Power

2.2.5.3   Solar Thermal Heating and Cooling

2.2.6        Wind Energy

2.3   Renewable Energy: Growth, Investment, Benefits and Deployment

2.4   Smart Grid Enable Renewables

2.5   Conclusion

2.6   References

- 3.1   An overview of distributed generation systems with power electronics

3.1.1        Photovoltaic technology

3.1.2        Wind power technology

3.1.3        Energy storage systems

3.2   Power electronics for grid-connected AC smart grid

3.2.1        Voltage-source converters

3.2.2        Multilevel power converters

3.3   Power electronics enabled autonomous AC power systems

3.3.1        Converter level controls in microgrids

3.3.2        System level coordination control

3.4   Power electronics enabled autonomous DC power systems

3.4.1        Converter level controls

3.4.2        System level coordination control

3.5   Conclusion

3.6   References

- 4.      Energy Storage Systems as an Enabling Technology for the Smart Grid

4.1   Introduction

4.2   Structure of Energy Storage System

4.3   Energy Storage Systems Classification and Description

4.4   Current State of Energy Storage Technologies

4.5   Techno-Economic Characteristics of Energy Storage Systems

4.6   Selection of Energy Storage Technology for Certain Application

4.7   Energy Storage Applications

4.8   Barriers to the Deployment of Energy Storage

4.9   Energy Storage Roadmap

4.10Conclusion

4.11References

- 5.      Microgrids: State of the Art and Future Challenges

5.1   Introduction

5.2   DC Versus AC Microgrid

5.2.1        LVAC and LVDC Networks

5.2.2        AC Microgrid

5.2.3        DC Microgrid

5.3   Microgrid Design

5.3.1        Methodology for the Microgrid Design

5.3.2        Design Considerations

5.4   Microgrid Control

5.4.1        Primary Control Level

5.4.2        Secondary Control Level

5.4.3        Tertiary Control Level

5.5   Microgrid Economics

5.5.1        Capacity Planning

5.5.2        Operations Modeling

5.5.3        Financial Modeling

5.5.4        Barriers to Realizing Microgrids

5.6   Operation of Multi-Microgrids

5.7   Microgrid Benefits

5.7.1        Economic Benefits

5.7.2        Technical Benefits

5.7.3        Environmental Benefits

5.8   Challenges

5.9   Conclusion

5.10References

- 6.      Smart Transportation

6.1   Introduction

6.2   Electric Vehicle Topologies

6.2.1        Battery Electric Vehicles

6.2.2        Plug-in Hybrid Electric Vehicles

6.2.3        Hybrid Electric Vehicles

6.2.4        Fuel-Cell Electric Vehicles

6.2.5        Fuel-Cell Electric Vehicles

6.3   Powertrain Architectures

6.3.1        Series HEV Architecture

6.3.2        Parallel HEV Architecture

6.3.3        Series-Parallel HEV Architecture

6.4   Battery Technology

6.4.1        Battery Parameters

6.4.2        Common Battery Chemistries

6.5   Battery Charger Technology

6.5.1        Charging Rates and Options

6.5.2        Wireless Charging

6.6   Vehicle to Grid (V2G) Concept

6.6.1        Unidirectional V2G

6.6.2        Bidirectional V2G

6.7   Barriers to EV Adoption

6.7.1        Technological Problems

6.7.2        Social Problems

6.7.3        Economic Problems

6.8   Trends and Future Developments

6.9   Conclusion

6.10References

- 7.      Net Zero Energy Buildings

7.1   Introduction

7.2   Net Zero Energy Building Definition

7.3   Net Zero Energy Building Design

7.4   Net Zero Energy Building: Modelling, Controlling and Optimization

7.5   Net Zero Energy Community

7.6   Net Zero Energy Building: Trends, Benefits, Barriers and Efficiency Investments

7.7   Conclusion

7.8   Reference

- 8.      Smart Grid Communication Infrastructures

8.1   Introduction

8.2   Advanced Metering Infrastructure

8.3   Smart Grid Communications

8.3.1        Challenges of SG Communications

8.3.2        Requirements of SG Communications

8.3.3        Architecture of SG Communication

8.3.4        SG Communication technologies

8.4   Conclusion

8.5   References

- 9.      Smart Grid Information Security

9.1   Introduction

9.2   Smart Grid Layers 

9.2.1        The power system layer

9.2.2        The information layer

9.2.3        The communication layer

9.3   Attacking Smart Grid Network Communication

9.3.1        Physical Layer Attacks.

9.3.2        Data Injection and Replay Attacks.

9.3.3        Network-Based Attacks

9.4    Physical Layer Attacks.

9.4.1        Resilient Industrial Control Systems

9.4.2        Areas of Resilience

9.4.2.1   Human systems

9.4.2.2   Cyber security

9.4.2.3   Complex networks and networked control systems

9.5   Cyber Security Challenges in Smart Grid

9.6   Adopting a Smart Grid Security Architecture Methodology

9.6.1        Smart Grid Security Objectives.

9.6.2        Cyber Security Requirements

9.6.2.1   Attack detection and resilience operations.

9.6.2.2   Identification, and access control.

9.6.2.3   Secure and efficient communication protocols.

9.7   Validating Your Smart Grid

9.8   Threats and Impacts: Consumers and Utility Companies

9.9   Governmental Effort to Secure Smart Grids

9.10Conclusion

9.11References

10.  Data Management in Smart Grid

10.1Introduction

10.2 Sources of Data in Smart Grid

10.3Big Data Era

10.4Tools to Manage Big Data

10.4.1     Apache Hadoop

10.4.2     Not Only SQL (NoSQL)

10.4.3     Microsoft HDInsight

10.4.4     Hadoop MapReduce

10.4.5     Cassandra

10.4.6     Storm

10.4.7     Hive

10.4.8     Plotly

10.4.9     Talend

10.4.10  Bokeh

10.4.11  Cloudera

10.5Big Data Integration, Frameworks, and Data Bases

10.6Building the Foundation for Big Data Processing

10.6.1     Big Data Management Platform

10.6.1.1  Acquisition and Recording.

10.6.1.2  Extraction, Cleaning, and Prediction.

10.6.1.3  Big Data Integration

10.6.2     Big Data Analytics Platform

10.6.2.1  Modeling and Analysis

10.6.2.2  Interpretation

10.7Transforming Big Data for High Value Action

10.7.1     Decide what to produce

10.7.2     Source the raw materials

10.7.3     Produce insights with speed

10.7.4     Deliver the goods and act

10.8Privacy Information Impacts on Smart Grid.

10.9Meter Data Management for Smart Grid

10.10                  Summary

10.11                  References

11.  Demand-Management

11.1 Introduction

11.2Demand Response

11.3Demand Response Programs

11.3.1     Load-Response Programs

11.3.2     Price Response Programs

11.4 End User Engagement

11.5Challenges of Demand Response within Smart Grid

11.6Demand-Side Management (DSM)

11.7Demand Side Management Techniques

11.8Demand-Side Management Evaluation

11.9Demand Response Applications

11.10                  Summary

11.11                  References

12.  Business Models for the Smart Grid

12.1The Business Model Concept

12.2The Electricity Value Chain

12.3Electricity Markets

12.4Review of the Previous Proposed Smart Grid Business Models

12.4.1     Timing-Based Business Model

12.4.2     Business Intelligence Model

12.4.3     Business Models for Renewable Energy

12.4.4     Service-oriented Business Models

12.4.5     Prosumer Business Models

12.4.6     Integrated Energy Services Business Model

12.4.7     Future Business Model Levers

12.5Blockchain Based Electricity Market

12.6Conclusion

12.7References

13.  Smart Grid Customers’ Acceptance and Engagement

13.1Introduction

13.2Customer as one of the Smart Grid Domains

13.3Understanding the Smart Grid Customer 

13.4Smart Grid Customer Acceptance

13.5Customer Engagement in the Smart Grid

13.6Challenges for Consumer Engagement, Policy Recommendation and Research Agenda

13.7Conclusion

14.  Cloud Computing for Smart Grid

14.1 Introduction

14.2 Overview of Cloud Computing for Smart Grid

14.3 Cloud Computing

14.4 Cloud computing Architecture

14.4.1     1Infrastructure as a Service (IaaS)

14.4.2     2Platform-as-a-Service (PaaS)

14.4.3     Software-as-a-Service (SaaS)

14.5Cloud Computing Applications

14.6Cloud Applications for Smart Grid performance

14.7Cloud Applications for Energy Management

14.8Cloud computing-based power dispatching in smart grid

14.9Cloud computing characteristics in improving SG

14.10                  Opportunities and challenges of Cloud Computing in Smart grid

14.11                  Multiple perspectives for cloud implementation

14.12                  Conclusion

15.  On the Pivotal Role of Artificial Intelligence Towards the Evolution of Smart Grids: Advanced Methodologies and Applications

15.1Introduction

15.2Century-old grid and SG transition

15.3AI techniques in smart grid

15.3.1     AI commonly deployed techniques

15.3.1.1  Artificial Neural Networks-based

15.3.1.2  Fuzzy logic-based

15.3.1.3  Ensemble methods-based

15.3.1.4  Genetic algorithms-based

15.3.1.5  Expert Systems-based

15.3.1.6  Support Vector Machines-based

15.3.1.7  Hybrid models-based

15.3.2     Machine Learning Model Evaluation

15.4Major applications of AI in SG

15.4.1     Load forecasting

15.4.2     Alternative energy forecasting

15.4.3     Photovoltaic energy

15.4.4     Wind power

15.4.5     MPPT-based AI

15.4.6     Fault diagnosis-based AI

15.4.7     AI and Cyber smart grid security

15.4.8     Electricity price forecasting

15.5Challenges and future scope

15.6Conclusion

16.  Smart Grid Simulation Tools

16.1Introduction

16.2Simulation Approaches

16.2.1     Multi-Domain Simulation

16.2.2     Co-Simulation

16.2.3     Real-Time Simulation and Hardware-in-the-Loop

16.3Review of Smart Grid Planning and Analysis Tools

16.3.1     PSCAD

16.3.2     PowerWorld Simulator

16.3.3     ETAP

16.3.4     DIgSILENT PowerFactory

16.3.5     OpenDSS

16.3.6     GridLab-D

16.3.7     Conclusions

17.  Smart Grid Standards and Interoperability

17.1Introduction

17.2Organizations for Smart Grid Standardization

17.2.1     IEC Strategic Group on Smart Grid

17.2.2     Technical Communities and their Subcommittees of IEEE Power and Energy Society (PES)

17.2.3     National Institute of Standards and Technology

17.2.4     National Standard of P.R.C. for Smart Grid

17.3Smart Grid Policies for Standard Developments

17.3.1     United States

17.3.2     Germany

17.3.3     Europe

17.3.4     South Korea

17.3.5     Australia

17.3.6     Canada

17.3.7     Japan

17.3.8     China

17.4Smart Grid Standards

17.4.1     Revenue Metering Information Model

17.4.2     Building Automation

17.4.3     Substation Automation

17.4.4     Powerline Networking

17.4.5     Energy Management Systems

17.4.6     Interoperability Center Communications

17.4.7     Cyber Security

17.4.8     Electric Vehicles

17.5Conclusion

17.6References

18.  Smart Grid Challenges and Barriers, Critical Success Factors and Future Vision

18.1Introduction

18.2Structure of modern smart-grids

18.3Concept of reliability in power systems

18.4Smart-grid challenges and barriers

18.4.1     Low inertia issues - Frequency support

18.4.2     Moving towards full/more renewable energies

18.4.3     Protection issues

18.4.4     Control dynamic interactions.

18.4.5     Reliability issues

18.4.6     Marketing

18.5New reliability paradigm in smart-grids

18.5.1     Adequacy

18.5.2     Security

18.5.3     Static security

18.5.4     Dynamic/transient security

18.5.5     Cyber-security

18.6Summary

18.7References

Index [not supplied to follow later

Authors

Shady S. Refaat Omar Ellabban Sertac Bayhan Texas A&M University at Qatar. Haitham Abu-Rub Texas A&M University at Qatar. Frede Blaabjerg Miroslav M. Begovic