A comprehensive exploration of printable perovskite solar cells and their potential for commercialization
In Printable Mesoscopic Perovskite Solar Cells, a team of distinguished researchers delivers an accessible and incisive discussion of the principles, technologies, and fabrication processes associated with the manufacture and use of perovskite solar cells. The authors detail the properties, characterization methods, and technologies for halide perovskite materials and devices and explain printable processing technologies, mesoscopic anode and cathodes, and spacer layers for printable perovskite solar cells.
In the book, you’ll find expansive discussions of the stability issues inherent in perovskite solar cells and explore the potential for scaling and commercializing the printing of perovskite solar cells, complete with real-world industry data.
Readers will also find: - A thorough introduction to the background and fundamentals of perovskite solar cells - Comprehensive explorations of the characterization methods and technologies used with halide perovskite materials and devices - Practical discussions of printable processing technologies for perovskite solar cells - Fulsome treatments of the stability issues associated with perovskite solar cells and potential solutions for them
Perfect for materials scientists, solid state physicists and chemists, and electronics engineers, Printable Mesoscopic Perovskite Solar Cells will also benefit surface chemists and physicists.
Table of Contents
Biography xi
Preface xiii
1 Background and Basic Knowledge of Perovskite Solar Cells 1
Maria Vasilopoulou, Abd Rashid B. Mohd Yusoff, and Mohammad K. Nazeeruddin
1.1 Background 1
1.2 The Principle of Solar Cells 2
1.2.1 Silicon Solar Cells 2
1.2.2 Dye-sensitized Solar Cells 7
1.2.3 Organic Solar Cells 9
1.2.4 Perovskite Solar Cells 11
1.3 The Typical Structures of PSC 13
1.3.1 Mesoscopic Structure 13
1.3.2 Triple-mesoscopic Layer Structure 14
1.3.3 Regular Planar n-i-p Structure 15
1.3.4 Inverted Planar p-i-n Structure 15
References 15
2 Characterization Methods and Technologies for Halide Perovskite Materials and Devices 19
Lukas Wagner, Dmitry Bogachuk, Cheng Qiu, Gayathri Mathiazhagan, Salma Zouhair, and Andreas Hinsch
2.1 Introduction 19
2.2 Printing Layer Quality 19
2.2.1 Thickness Measurement 19
2.2.1.1 Profilometry 20
2.2.1.2 Sem 20
2.2.1.3 Ellipsometry 20
2.2.2 Porosity Estimation 21
2.2.2.1 Gas Adsorption (BET Method) 21
2.2.2.2 SEM/FIB 3D Nanotomography 22
2.2.3 Sheet Resistance 23
2.2.3.1 Four-point Probe Measurement 23
2.2.4 Shunt Resistance of Unfilled Cell 24
2.3 Material and Crystal Properties 25
2.3.1 X-Ray Diffraction (XRD) Analysis 25
2.3.2 UV-Vis-NIR Spectroscopy 25
2.3.3 Raman Shift Spectroscopy 26
2.3.4 Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX) 28
2.3.4.1 Scanning Electron Microscopy (SEM) 28
2.3.4.2 Energy Dispersive X-Ray Spectroscopy (EDX) 30
2.3.5 Atomic Force Microscopy (AFM) 31
2.3.6 Contact Angle Measurement 32
2.4 Spatially Resolved Steady-state Photophysical Methods 33
2.4.1 Photoluminescence Microscopy Imaging 34
2.4.2 Microscopic Photoluminescence Spectroscopy Mapping 35
2.4.3 Electroluminescence Imaging 36
2.4.4 Bias-dependent Photoluminescence Imaging 37
2.4.5 Real-time Photoluminescence Measurement 37
2.4.6 Dark Lock-in Thermography (DLIT) 39
2.4.7 Light-Beam-Induced Current (LBIC) 42
2.5 Transient Optoelectronic Methods 42
2.5.1 Intensity-modulated Photocurrent/Photovoltage Spectroscopy (imps/imvs) 42
2.5.2 Transient Photocurrent/Photovoltage (TPC/TPV) 43
2.5.3 Open-circuit Voltage Decay (OCVD) Analysis for Shunt Detection 44
2.5.4 Transient Absorption Spectroscopy (TAS) 45
2.5.5 Time-resolved Photoluminescence (TRPL) 46
2.5.5.1 Typical Setup: Pulsed (Transient) Excitation 46
2.5.5.2 Alternative Setup: Steady-state Excitation 46
2.5.5.3 Some Notes on Sample Preparation 49
2.5.6 Note on the Extension to Spatially Resolved Measurements 50
2.6 I-V Performance: Transient and Steady State 50
2.6.1 I-V Characterization 50
2.6.2 I-V Hysteresis 51
2.6.3 Stabilized Efficiency Measurement 52
2.6.4 Spectral Response/External Quantum Efficiency (SR/EQE) 52
2.6.5
V Oc Vs. Light Intensity Measurement 54
2.6.6 Effect of Parallel and Series Resistance R p 55
2.6.7 Effect of Saturation Current J 01 and J 02 56
2.6.8 Certification of PV Performance 57
2.6.9 Long-term Stability Measurement 58
References 59
3 Printable Processing Technologies for Perovskite Solar Cells 65
Daiyu Li, Anyi Mei, Yue Hu, and Hongwei Han
3.1 Introduction 65
3.2 Solution-Based Technologies 67
3.2.1 Spin Coating 67
3.2.2 Blade Coating 68
3.2.3 Slot-Die Coating 69
3.2.4 Bar Coating 72
3.2.5 Spray Coating 73
3.2.6 Inkjet Printing 75
3.2.7 Screen Printing 76
3.2.8 Chemical Bath Deposition 78
3.2.9 Soft-Cover Deposition 79
3.2.10 Brush Painting 80
3.3 Conclusion and Outlook 82
References 83
4 Mesoscopic Anodes and Cathodes for Printable Perovskite Solar Cells 89
Seigo Ito and Ryuki Tsuji
4.1 Introduction 89
4.2 Fabrication Methods 90
4.3 Comact Layer (TiO2) 92
4.4 Mesoporous Anodes (n-Type Semiconductor: TiO2 ,etc.) 95
4.5 Mesoporous Cathodes (NiO and Co3 O4) 99
4.6 Back-Contact Porous Carbon 100
4.7 Photovoltaic Measurements 102
4.8 Conclusion 103
References 103
5 Insulating Layers for Printable Mesoscopic Perovskite Solar Cells 105
Jian Zhang, Dongjie Wang, and Yuli Xiong
5.1 Introduction 105
5.2 ZrO2 -Insulating Mesoscopic Layers 106
5.3 Al2 O3 -Insulating Mesoscopic Layers 117
5.4 SiO2 -Insulating Mesoscopic Layers 121
5.5 Multilayer Insulating Mesoscopic Layers 124
5.5.1 Al2 O3 + ZrO2 124
5.5.2 Al2 O3 + NiO 126
5.5.3 ZrO2 + NiO 128
5.6 Conclusion and Perspective 130
References 132
6 Perovskite Materials and Perovskite Solar Cells 137
Maria Vasilopoulou, Abd Rashid B. Mohd Yusoff, and Mohammad K. Nazeeruddin
6.1 Perovskite Materials 137
6.1.1 3D Halide Perovskites 137
6.1.2 2D Halide Perovskites 142
6.1.3 Synthesis of Halide Perovskites 144
6.2 Compositional and Interfacial Engineering of Perovskite Solar Cells 147
6.2.1 Solvent Engineering 147
6.2.2 Cation Optimization 150
6.2.3 Halide Optimization 151
6.2.4 Stoichiometric and Nonstoichiometric Compositions 151
6.2.5 The Influence of Inorganic Cations on the Formation of Different Phases 153
6.2.6 Halide Segregation 155
6.2.7 Interface Engineering 155
6.2.8 Charge Transfer Dynamics 157
References 157
7 The Efficiency Progress in Printable Mesoscopic Perovskite Solar Cells 167
Xufeng Xiao, Wenhao Zhang, Qifei Wang, Wenjun Wu, and Yue Hu
7.1 Introduction 167
7.2 Solvent Engineering and Annealing 169
7.2.1 Solvent Engineering 169
7.2.2 Solvent Annealing 174
7.3 Composition Engineering 178
7.3.1 The A-Site Cation 178
7.3.2 The B-Site Cation and X-Site Anion 180
7.4 Additive Engineering 183
7.4.1 Functional Molecular Additives 183
7.4.2 Other Additives 187
7.5 Interfaces Engineering 190
7.5.1 Interface of Perovskite and Electron Transport Materials 191
7.5.2 Interface of Perovskite and Counter Electrode 193
7.6 Conclusion and Outlook 198
References 198
8 Stability Issues and Solutions for Perovskite Solar Cells 209
Deyi Zhang, Anyi Mei, and Hongwei Han
8.1 Substrate 210
8.2 Electron Transport Layer 210
8.3 Hole Transport Layer 212
8.4 Back Electrode 212
8.5 Encapsulant 215
8.6 Halide Perovskite Light Absorbing Layer 216
8.6.1 Thermal Stability 216
8.6.2 Phase Stability 217
8.6.3 Ambient Stability 218
8.6.4 Operational Stability 219
8.6.4.1 Degradation Pathways 219
8.6.4.2 Heat Management 222
8.6.4.3 Grain Boundary Modification 223
8.6.4.4 Interface Strengthening 223
8.6.4.5 Defect Degeneration 225
8.6.4.6 Reverse-bias Voltages 226
8.7 Summary 227
References 228
9 Manufacture, Modules, and Applications 237
Simone Meroni and Trystan Watson
9.1 Introduction 237
9.2 Manufacture 240
9.2.1 Screen Printing 240
9.2.1.1 Ink Properties 243
9.2.1.2 Mesh Characteristics 243
9.2.1.3 Gap Between Screen and Substrate 244
9.2.1.4 A Case Study: TiO2 245
9.2.2 Deposition of the Compact TiO2 246
9.2.3 Deposition of the Mesoscopic Layers 248
9.2.4 Deposition of Additional Interlayers 248
9.2.5 Infiltration of Perovskite 249
9.3 Modules 250
9.3.1 Designs 251
9.3.2 Optimization 253
9.3.2.1 A Simplified Approach 253
9.3.2.2 2D Poisson’s Equation 255
9.3.2.3 Carbon Cells and Contact Resistance 258
9.4 Applications 258
9.4.1 Modules Performance 258
9.4.2 Encapsulation and Outdoor Performance 259
9.4.3 Indoor Applications 261
9.5 Summary 262
References 263
10 Perspective 269
Xiayan Chen, Yue Hu, Anyi Mei, Yinhua Zhou, and Hongwei Han
10.1 Commercializing 269
10.2 Exceeding SQ Limit 270
10.3 Efficiency Breaking Out of SQ Limit 273
References 274
Index 277