+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Spectroscopy and Characterization of Nanomaterials and Novel Materials. Experiments, Modeling, Simulations, and Applications. Edition No. 1

  • Book

  • 528 Pages
  • April 2022
  • John Wiley and Sons Ltd
  • ID: 5839367
Spectroscopy and Characterization of Nanomaterials and Novel Materials

Comprehensive overview of nanomaterial characterization methods and applications from leading researchers in the field

In Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications, the editor Prabhakar Misra and a team of renowned contributors deliver a practical and up-to-date exploration of the characterization and applications of nanomaterials and other novel materials, including quantum materials and metal clusters. The contributions cover spectroscopic characterization methods for obtaining accurate information on optical, electronic, magnetic, and transport properties of nanomaterials.

The book reviews nanomaterial characterization methods with proven relevance to academic and industry research and development teams, and modern methods for the computation of nanomaterials’ structure and properties - including machine-learning approaches - are also explored. Readers will also find descriptions of nanomaterial applications in energy research, optoelectronics, and space science, as well as: - A thorough introduction to spectroscopy and characterization of graphitic nanomaterials and metal oxides - Comprehensive explorations of simulations of gas separation by adsorption and recent advances in Weyl semimetals and axion insulators - Practical discussions of the chemical functionalization of carbon nanotubes and applications to sensors - In-depth examinations of micro-Raman imaging of planetary analogs

Perfect for physicists, materials scientists, analytical chemists, organic and polymer chemists, and electrical engineers, Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications will also earn a place in the libraries of sensor developers and computational physicists and modelers.

Table of Contents

Preface  xix

About the Editor  xxvii

 

Part I Spectroscopy and Characterization 1

 

1 Spectroscopic Characterization of Graphitic Nanomaterials and Metal Oxides for Gas Sensing 3

Olasunbo Farinre, Hawazin Alghamdi, and Prabhakar Misra

1.1 Introduction and Overview  3

1.1.1 Graphitic Nanomaterials  3

1.1.1.1 Synthesis of Graphitic Nanomaterials  5

1.1.2 Metal Oxides  8

1.2 Spectroscopic Characterization of Graphitic Nanomaterials and Metal Oxides 9

1.2.1 Graphitic Nanomaterials  9

1.2.1.1 Characterization of Carbon Nanotubes (CNTs)  10

1.2.1.2 Characterization of Graphene and Graphene Nanoplatelets (GnPs)  11

1.2.2 Characterization of Tin Dioxide (SnO2)  12

1.3 Graphitic Nanomaterials and Metal Oxide-Based Gas Sensors  19

1.3.1 Fabrication of Graphitic Nanomaterials-Based Gas Sensors  19

1.3.1.1 Carbon Nanotube (CNT)-Based Gas Sensors  19

1.3.1.2 Graphene and Graphene Nanoplatelet (GnP)-Based Gas Sensors  20

1.3.2 Fabrication of Metal Oxide-Based Gas Sensors  21

1.3.2.1 Tin Dioxide (SnO2)-Based Gas Sensors  23

1.4 Conclusions and Future Work 24 Acknowledgments 26 References 26

 

2 Low-dimensional Carbon Nanomaterials: Synthesis, Properties, and Applications Related to Heat Transfer, Energy Harvesting, and Energy Storage 33

Mahesh Vaka, Tejaswini Rama Bangalore Ramakrishna, Khalid Mohammad, and Rashmi Walvekar

2.1 Introduction  33

2.2 Synthesis and Properties of Low-dimensional Carbon Nanomaterials  35

2.2.1 Zero-dimensional Carbon Nanomaterials (0-DCNs)  35

2.2.1.1 Fullerene  35

2.2.1.2 Carbon-encapsulated Metal Nanoparticles  35

2.2.1.3 Nanodiamond  37

2.2.2 Onion-like Carbons  38

2.2.3 One-dimensional Carbon Nanomaterials  39

2.2.3.1 Carbon Nanotube  39

2.2.3.2 Carbon Fibers  39

2.2.4 Two-dimensional Carbon Nanomaterials  40

2.3 Applications  42

2.3.1 Hydrogen Storage  42

2.3.2 Solar Cells  43

2.3.3 Thermal Energy Storage  44

2.3.4 Energy Conversion  45

2.4 Conclusions  46

References  46

 

3 Mesoscale Spin Glass Dynamics  55

Samaresh Guchhait

3.1 Introduction  55

3.2 What Is a Spin Glass?  56

3.2.1 Spin Glass and Its Correlation Length  57

3.2.2 Mesoscale Spin Glass Dynamics  60

3.3 Summary 64 Acknowledgments 64 References 64

 

4 Raman Spectroscopy Characterization of Mechanical and Structural Properties of Epitaxial Graphene 67

Amira Ben Gouider Trabelsi, Feodor V. Kusmartsev, Anna Kusmartseva, and Fatemah Homoud Alkallas

4.1 Introduction  67

4.2 Epitaxial Graphene Mechanical Properties Investigation  68

4.2.1 Optical Location of Epitaxial Graphene Layers  68

4.2.2 Raman Location of Mechanical Properties Changes  71

4.2.2.1 Graphene 2D Mode  71

4.2.2.2 G Mode Investigation  74

4.2.2.3 Strain Percentage  76

 4.3 Raman Polarization Study  77

4.3.1 Size Domain of Graphene Layer  77

4.3.2 Polarization Study  78

4.4 Conclusions 80 Acknowledgments 80 References 80

 

5 Raman Spectroscopy Studies of III-V Type II Superlattices  83

Henan Liu and Yong Zhang

5.1 Introduction  83

5.2 Raman Study on InAs/GaSb SL  84

5.2.1 Analysis on (001) Scattering Geometry  85

5.2.2 Analysis on (110) Scattering Geometry  86

5.3 Raman Study on InAs/InAs1-xSbx SL  90

5.3.1 Raman Results for the Constituent Bulks and InAs1-xSbx Alloys  90

5.3.2 Analysis on (001) Scattering Geometry for the SLs  93

5.3.3 Analysis on (110) Scattering for the SLs  95

5.4 A Comparison Among the InAs/InAs1-xSbx, InAs/GaSb, and GaAs/AlAs SLs 97

5.5 Conclusion  98

References  98

 

6 Dissecting the Molecular Properties of Nanoscale Materials Using Nuclear Magnetic Resonance Spectroscopy 101

Nipanshu Agarwal and Krishna Mohan Poluri

6.1 Introduction to Nanomaterials  101

6.2 Techniques Used for Characterization of Nanomaterials  104

6.3 Nuclear Magnetic Resonance (NMR) Spectroscopy  105

6.3.1 Principle of NMR Spectroscopy  106

6.3.2 Various NMR Techniques Used in Nanomaterial Characterization  106

6.3.2.1 One-dimensional NMR Spectroscopy  108

6.3.2.2 Relaxometry (T1 and T2)  108

6.3.2.3 Two-dimensional NMR Spectroscopy  110

6.3.3 Advantages and Disadvantages of Using NMR Spectroscopy  114

6.4 Applications of NMR in Nanotechnology  115

6.4.1 NMR for Characterization of Nanomaterials  115

6.4.1.1 Characterization of Gold Nanomaterials by NMR  115

6.4.1.2 Characterization of Organic Nanomaterials by NMR  119

6.4.1.3 Characterization of Quantum Dots and Nanodiamonds by NMR 120

6.4.2 Elucidating the Molecular Characteristics/Interactions of Nanomaterials Using NMR 120

6.4.2.1 Characterizing Nanodisks Using Paramagnetic NMR  120

6.4.2.2 Characterizing Nanomaterials Using Low Field NMR (LF-NMR) 123

6.4.2.3 Analyzing Nanomaterial Interactions Using 2D NMR Techniques  123

6.4.3 Characterization of Magnetic Contrast Agents (MR-CAs)  128

6.5 Conclusions 132 Acknowledgments 132 References 132

 

7 Charge Dynamical Properties of Photoresponsive and Novel Semiconductors Using Time-Resolved Millimeter-Wave Apparatus 149

Biswadev Roy, Branislav Vlahovic, M.H. Wu, and C.R. Jones

7.1 Introduction  149

7.1.1 Why Charge Dynamics for Novel Materials in the Millimeter-Wave Regime? 150

7.1.2 Underlying Theory of Operation and Time-Resolved Data: Treatment of Internal Fields in Samples 154

7.1.3 Apparatus Design and Instrumentation  156

7.1.4 Sensitivity Analysis and Dynamic Range  158

7.1.5 Calibration Factor  159

7.2 Studies on RF Responses of Materials  162

7.2.1 Transmission and Reflection Response for GaAs  162

7.2.2 Silicon Response by Resistivity  162

7.2.2.1 Charge Carrier Concentration  165

7.2.2.2 Millimeter-Wave Probe and Laser Data  166

7.2.2.3 TR-mmWC Charge Dynamical Parameter Correlation Table and Sample-Resistivity 168

7.2.2.4 Photoconductance (ΔG) Using Calculated Sensitivity  171

7.3 CdSxSe1-x Nanowires  174

7.3.1 Transmission and Reflection Response Spectra for CdX Nanowire  174

7.3.2 Millimeter-Wave Signal Coherence and Decay Response of CdSxSe1-x Nanowire 176

7.4 Conclusions  182

7.5 Data: CdSxSe1-x TR-mmWC Responses for Various Pump Fluences  182

Acknowledgments  183

References  183

 

8 Metal Nanoclusters  187

Sayani Mukherjee and Sukhendu Mandal

8.1 Introduction  187

8.2 Gold Nanoclusters  189

8.2.1 Phosphine-protected Au-NCs  190

8.2.2 Thiol-protected Nanoclusters 193

8.2.2.1 Brust-Schiffrin Synthesis  193

8.2.2.2 Modified Brust-Schiffrin Synthesis  194

8.2.2.3 Size-focusing Method  197

8.2.2.4 Ligand Exchange-induced Structural Transformation  200

8.2.3 Other Ligands as Protecting Agents  202

8.3 Mixed Metals Alloy Nanoclusters  202

8.4 Conclusion  203

8.5 Future Direction 203 Acknowledgment 204 References 204

 

Part II Modeling and Simulation  211

 

9 Simulations of Gas Separation by Adsorption  213

Hawazin Alghamdi, Hind Aljaddani, Sidi Maiga, and Silvina Gatica

9.1 Introduction  213

9.2 Simulation Methods  216

9.2.1 Molecular Dynamics Simulations  216

9.2.2 Monte Carlo Simulations  217

9.2.3 Ideal Adsorbed Solution Theory (IAST)  218

9.3 Models  220

9.3.1 Molecular Models  220

9.3.2 Substrate Models  221

9.3.3 Validation of the Methods and Force Fields  222

9.4 Examples  223

9.4.1 GCMC Simulation of CO2/CH4 Binary Mixtures on Nanoporous Carbons 223

9.4.2 MD Simulations of CO2/CH4 Binary Mixtures on Graphene Nanoribbons/Graphite 224

9.4.3 MD Simulations of H2O/N2 Binary Mixtures on Graphene  228

9.4.4 Calculation of the Selectivity of CO2 and CH4 on Graphene Using the IAST 231

9.5 Conclusion  236

References  236

10 Recent Advances in Weyl Semimetal (MnBi2Se4) and Axion Insulator (MnBi2Te4) 239

Sugata Chowdhury, Kevin F. Garrity, and Francesca Tavazza

10.1 Introduction  239

10.2 Discussion  241

10.2.1 MBS  242

10.2.2 MBT  243

10.3 Outlook  252

References  253

 

Part III  Applications  261

 

11 Chemical Functionalization of Carbon Nanotubes and Applications to Sensors 263

Khurshed Ahmad Shah and Muhammad Shunaid Parvaiz

11.1 Introduction  263

11.2 Properties of Carbon Nanotubes  267

11.2.1 Electrical Properties  267

11.2.2 Mechanical Properties  269

11.2.3 Optical Properties  269

11.2.4 Physical Properties  271

11.3 Properties of Functionalized Carbon Nanotubes  272

11.3.1 Mechanical Properties  272

11.3.2 Electrical Properties  272

11.4 Types of Chemical Functionalization  273

11.4.1 Thermally Activated Chemical Functionalization  273

11.4.2 Electrochemical Functionalization  273

11.4.3 Photochemical Functionalization  274

11.5 Chemical Functionalization Techniques  274

11.5.1 Chemical Techniques  274

11.5.2 Electrons/Ions Irradiation Techniques  275

11.5.3 Specialized Techniques  275

11.6 Sensing Applications of Carbon Nanotubes  276

11.6.1 Gas Sensors  276

11.6.2 Biosensors  277

11.6.3 Chemical Sensors  277

11.6.4 Electrochemical Sensors  278

11.6.5 Temperature Sensors  278

11.6.6 Pressure Sensors  278

11.7 Advantages and Disadvantages of Carbon Nanotube Sensors  278

11.8 Summary  279

References  280

 

12 Graphene for Breakthroughs in Designing Next-Generation Energy Storage Systems 287

Abhilash Ayyapan Nair, Manoj Muraleedharan Pillai, and Sankaran Jayalekshmi

12.1 Introduction  287

12.2 Li-Ion Cells  289

12.2.1 Basic Working Mechanism  289

12.2.2 Role of Graphene: Graphene Foam-Based Electrodes for Li-Ion Cells 291

12.3 Li-S Cells  294

12.3.1 Advantages of Li-S Cells  295

12.3.2 Working of Li-S Cells  295

12.3.3 Challenges of Li-S Cells  296

12.3.4 Graphene-Based Sulfur Cathodes for Li-S Cells  297

12.3.5 Graphene Oxide-Based Sulfur Cathodes for Li-S Cells  298

12.4 Supercapacitors  299

12.4.1 Basic Working Principle  299

12.4.2 Graphene-Based Supercapacitor Electrodes  300

12.4.3 Graphene/Polymer Composites as Electrodes  303

12.4.4 Graphene/Metal Oxide Composite Electrodes  305

12.5 Li-Ion Capacitors  306

12.5.1 Working Principle  306

12.5.2 Graphene/Graphene Composites as Cathode Materials  307

12.5.3 Graphene/Graphene Composites as Anode Materials  309

12.6 Looking Forward  310

References  311

 

13 Progress in Nanostructured Perovskite Photovoltaics 317

Sreekanth Jayachandra Varma and Ramakrishnan Jayakrishnan

13.1 Introduction  317

13.2 Nanostructured Perovskites as Efficient Photovoltaic Materials  318

13.3 Perovskite Quantum Dots  321

13.4 Perovskite Nanowires and Nanopillars  324

13.4.1 2D Perovskite Nanostructures  326

13.4.2 2D/3D Perovskite Heterostructures  330

13.5 Summary  336

References  336

 

14 Applications of Nanomaterials in Nanomedicine  345

Ayanna N. Woodberry and Francis E. Mensah

14.1 Introduction  345

14.2 Nanomaterials, Definition, and Historical Perspectives 345

14.2.1 What Are Nanomaterials?  345

14.2.2 Origin and Historical Perspectives  346

14.2.3 Synthesis of Nanomaterials  349

14.2.3.1 Inorganic Nanoparticles  349

14.3 Nanomaterials and Their Use in Nanomedicine  351

14.3.1 What Is Nanomedicine?  351

14.3.2 The Myth of Small Molecules  351

14.3.3 Nanomedicine Drug Delivery Has Implications that Go Beyond Medicine 351

14.3.4 Improvement in Function  351

14.3.5 Nanomaterials Use in Nanomedicine for Therapy  351

14.3.5.1 Progress in Polymer Therapeutics as Nanomedicine  351

14.3.5.2 Recent Progress in Polymer: Therapeutics as Nanomedicines  352

14.3.5.3 Use of Linkers  354

14.3.5.4 Targeting Moiety  354

14.3.6 Polymeric Drugs  355

14.3.7 Polymeric-Drug Conjugates  355

14.3.8 Polymer-Protein Conjugates  356

14.4 The Use of Nanomaterials in Global Health for the Treatment of Viral Infections Such As the DNA and the RNA Viruses, Retroviruses, Ebola, and COVID-19 356

14.4.1 Nanomaterials in Radiation Therapy  358

14.5 Conclusion  359

References  359

 

15 Application of Carbon Nanomaterials on the Performance of Li-Ion Batteries 361

Quinton L. Williams, Adewale A. Adepoju, Sharah Zaab, Mohamed Doumbia, Yahya Alqahtani, and Victoria Adebayo

15.1 Introduction  361

15.2 Battery Background  362

15.2.1 Genesis of the Rechargeable Battery  362

15.2.2 Battery Cell Classifications  363

15.2.2.1 Primary Batteries - Non-rechargeable Batteries  363

15.2.2.2 Secondary Batteries - Rechargeable Batteries  363

15.2.3 Comparison of Rechargeable Batteries  363

15.2.4 Internal Battery Cell Components  364

15.2.4.1 Cathode  365

15.2.4.2 Anode  366

15.2.4.3 Electrolyte  366

15.2.5 Crystal Structure of Active Materials  366

15.2.5.1 Layered LiCoO2  367

15.2.5.2 Spinel LiM2O4  367

15.2.5.3 Olivine LiFePO4  368

15.2.5.4 NCM  369

15.2.6 Principle of Operation of Li-Ion Batteries  370

15.2.7 Battery Terminology  371

15.2.7.1 Battery Safety  373

15.2.8 A Glimpse into the Future of Battery Technology  374

15.3 High C-Rate Performance of LiFePO4/Carbon Nanofibers Composite Cathode for Li-Ion Batteries 375

15.3.1 Introduction  375

15.3.2 Experimental  375

15.3.2.1 Preparation of Composite Cathode  375

15.3.2.2 Characterization  376

15.3.3 Results and Discussion  376

15.3.4 Summary  379

15.4 Graphene Nanoplatelet Additives for High C-Rate LiFePO4 Battery Cathodes 380

15.4.1 Introduction  380

15.4.2 Experimental  381

15.4.2.1 Composite Cathode Preparation and Battery Assembly  381

15.4.2.2 Characterizations and Electrochemical Measurements  382

15.4.3 Results and Discussion  382

15.4.4 Summary  386

15.5 LiFePO4 Battery Cathodes with PANI/CNF Additive  386

15.5.1 Introduction  386

15.5.2 Experimental  386

15.5.2.1 Preparation of the PANI/CNF Conducting Agent and Coin Cell  387

15.5.3 Results and Discussion  387

15.5.4 Conclusion  392

15.6 Reduced Graphene Oxide - LiFePO4 Composite Cathode for Li-Ion Batteries 393

15.6.1 Introduction  393

15.6.2 Experimental  394

15.6.3 Results and Discussion  394

15.6.4 Summary  398

15.7 Rate Performance of Carbon Nanofiber Anode for Lithium-Ion Batteries 398

15.7.1 Introduction  398

15.7.2 Experimental  398

15.7.3 Results and Discussion  399

15.7.4 Summary  401

15.8 NCM Batteries with the Addition of Carbon Nanofibers in the Cathode 402

15.8.1 Introduction  402

15.8.2 Experimental  403

15.8.3 Results and Discussion  403

15.8.4 Summary  405

15.9 Conclusion 407 Acknowledgments 407 References 408

 

Part IV Space Science  415

 

16 Micro-Raman Imaging of Planetary Analogs: Nanoscale Characterization of Past and Current Processes 417

Dina M. Bower, Ryan Jabukek, Marc D. Fries, and Andrew Steele

16.1 Introduction  417

16.2 Relationships Between Minerals  421

16.2.1 Minerals in the Solar System  421

16.2.2 Minerals as Indicators of Life and Habitability  425

16.3 Planetary Analogs  427

16.3.1 Modern Terrestrial Analogs  427

16.3.2 Ancient Terrestrial Analogs  429

16.4 Meteorites and Lunar Rocks  431

16.5 Carbon  434

16.5.1 Definition and Description of Macromolecular Carbon  434

16.5.2 Macromolecular Carbon on the Earth and in Astromaterials  435

16.5.3 Macromolecular Carbon in Petrographic Context  437

16.6 Conclusion  439

References  439

 

17 Machine Learning and Nanomaterials for Space Applications 453

Eric Lyness, Victoria Da Poian, and James Mackinnon

17.1 Introduction to Artificial Intelligence and Machine Learning  453

17.1.1 What Do We Mean by Artificial Intelligence and Machine Learning? 454

17.1.2 The Field of Data Analysis and Data Science  455

17.1.2.1 Data Analysis  455

17.1.2.2 Data Science  455

17.1.3 Applications in Nanoscience  456

17.2 Machine Learning Methods and Tools  457

17.2.1 Types of ML  457

17.2.1.1 Supervised  457

17.2.1.2 Unsupervised  459

17.2.1.3 Semi-supervised  460

17.2.1.4 Reinforcement Learning  460

17.2.2 The Basic Techniques and the Underlying Algorithms  460

17.2.2.1 Regression (Linear, Logistic)  460

17.2.2.2 Decision Tree  461

17.2.2.3 Neural Networks  461

17.2.2.4 Expert Systems  463

17.2.2.5 Dimensionality Reduction  463

17.2.3 Available Tools: Discussion of the Software Available, Both Free and Commercial, and How They Can Be Used by Nonexperts 464

17.3 Limitations of AI  464

17.3.1 Data Availability  464

17.3.1.1 Splitting Your Dataset  464

17.3.2 Warnings in Implementation (Overfitting, Cross-validation)  465

17.3.3 Computational Power  465

17.4 Case Study: Autonomous Machine Learning Applied to Space Applications 466

17.4.1 Few Existing AI Applications for Planetary Missions  466

17.4.2 MOMA Use-Case Project (Leaning Toward Science Autonomy)  467

17.5 Challenges and Approaches to Miniaturized Autonomy  468

17.5.1 Computing Requirements of AI/Machine Learning  468

17.5.2 Why Is Space Hard?  469

17.5.3 Software Approaches for Embedded Hardware  471

17.6 Summary: How to Approach AI  473

References  474

Index  477

 

 

Authors

Prabhakar Misra