+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Phytochemical Drug Discovery for Central Nervous System Disorders. Biochemistry and Therapeutic Effects. Edition No. 1

  • Book

  • 464 Pages
  • June 2023
  • John Wiley and Sons Ltd
  • ID: 5839400
PHYTOCHEMICAL DRUG DISCOVERY FOR CENTRAL NERVOUS SYSTEM DISORDERS

Understand herbal and plant-based treatments for chronic disorders with this groundbreaking work

Due in part to the aging of the global population, disorders of the central nervous system have become an increasingly grave public health concern in recent years. Demand for pharmaceutical treatments has been correspondingly high, but there are many barriers to the successful development of effective synthetic drugs. Phytomedicines, or plant-based and herbal medicines, have proven to be an effective alternative, boasting lower toxicity and cost and higher efficacy, and one that demands greater research and broader-based practitioner knowledge.

Phytochemical Drug Discovery for Central Nervous System Disorders meets this demand with a timely, clearly-structured guide. It thorough coverage presents a wide range of phytochemicals with potential as candidates for drug discovery, describing their sources, properties, and therapeutic efficacy. The result is a vital contribution to the ongoing fight against central nervous system (CNS) disorders.

Phytochemical Drug Discovery for Central Nervous System Disorders readers will also find: - Detailed treatment of CNS-active plant products, neuroprotective chemicals, plant-based nutraceutical products, and more - Up-to-date information on FDA-approved drugs and existing plant-based products used to treat CNS disorders - An authorial team featuring experts from across the globe

Phytochemical Drug Discovery for Central Nervous System Disorders is essential for drug discovery scientists, drug developers, medicinal chemists, biochemists, and any researchers and professionals in the health care or pharmaceutical industries.

Table of Contents

Contributors xv

Preface xxi

1 Central Nervous System Disorders and Food and Drug Administration-Approved Drugs 1
Estella U. Odoh, Chukwuebuka Egbuna, Chukwuma M. Onyegbulam, Diovu E. Obioma, Linda A. Onugwu, Obinna S. Onugwu, and Mithun Rudrapal

1.1 Incidence and Prevalence of Major Neurologic Disorders 2

1.2 Etiology 2

1.3 Pathogenesis 3

1.4 Central Nervous System Disorders and Drugs Approved by the Food and Drug Administration 3

1.4.1 Attention-Deficit/Hyperactivity Disorder 4

1.4.2 Migraine 8

1.4.3 Parkinson’s Disease 9

1.4.4 Multiple Sclerosis 11

1.4.5 Alzheimer’s Disease 11

1.4.6 Muscular Dystrophy 12

1.4.7 Epilepsy/Seizure 12

1.5 Conclusion 13

References 13

2 Drug Discovery from Medicinal Plants against Parkinson’s Disease 17
Dunya Al-Duhaidahawi

2.1 Pathogenesis of Parkinson’s Disease 17

2.1.1 Misfolding and Aggregation of Proteins 17

2.1.2 Mitochondrial Dysfunction 18

2.1.3 Neuroinflammation 18

2.1.4 Metal Ion Imbalance in the Brain 18

2.1.5 Protease-Mediated Degradation Inhibition 18

2.1.6 Oxidative Stress 19

2.2 Natural Dopaminergic Neuroprotective Compounds 19

2.2.1 Polyphenols 19

2.2.1.1 Resveratrol 19

2.2.1.2 Sesamin 19

2.2.1.3 Curcumin 19

2.2.1.4 6-Shogaol 20

2.2.1.5 Fustin 20

2.2.1.6 Biochanin A 20

2.2.1.7 Acacetin 20

2.2.1.8 Baicalein 20

2.3 Nitrogenated Phytochemicals 21

2.3.1 Alkaloids 21

2.3.1.1 Tetrahydro Berberine 21

2.3.1.2 Berberine 21

2.3.1.3 Celastrol 21

2.3.2 Saponins 21

2.3.2.1 Astragaloside IV 21

2.3.2.2 Ginseng 21

2.4 Chinese Herbal Medications and Parkinson’s Disease 22

2.4.1 Acanthopanax 22

2.4.2 Alpinia 22

2.4.3 Camellia 22

2.4.4 Cassia 23

2.4.5 Chrysanthemum 23

2.4.6 Cistanche 23

2.4.7 Gastrodia 23

2.4.8 Ginkgo 24

2.4.9 Gynostemma 24

2.4.10 Paeonia 24

2.4.11 Panax 25

2.4.12 Polygala 25

2.4.13 Polygonum 25

2.4.14 Psoralea 26

2.5 Herbal Medicines from India and Parkinson’s Disease 26

2.5.1 Withania somnifera 26

2.5.2 Tinospora cordifolia 26

2.5.3 Mucuna pruriens 26

2.6 European Plants 27

2.7 α-Synuclein as a Potential Therapeutic Target 27

2.7.1 Phytochemicals Targeting the α-Synuclein Cascade 27

2.8 Conclusion 28

References 39

3 Drug Discovery from Medicinal Plants against Alzheimer’s Disease 43
Mona M. Marzouk, Mai M. Farid, Nesrine M. Hegazi, and Shahira M. Ezzat

3.1 Pathogenesis 44

3.1.1 Amyloid Plaques 44

3.1.2 Neurofibrillary Tangles 45

3.1.3 Synaptic Damage 45

3.1.4 Cholinergic Functions 45

3.1.5 Oxidative Stress 45

3.1.6 Neuroinflammation 45

3.2 Treatment Strategies for Alzheimer’s Disease 46

3.2.1 Amyloid Hypothesis 46

3.2.2 Tau Proteins Hypothesis 46

3.2.3 Dendritic Hypothesis 54

3.2.4 Cholinergic Hypothesis 55

3.2.5 Strategies for 5-HT 6 Obstruction 55

3.2.6 Metabolic Hypothesis 55

3.3 Medicinal Plants Having Effects against Alzheimer’s Disease 56

3.3.1 Medicinal Plants Targeting the Cholinergic System 56

3.3.2 Medicinal Plants Targeting Amyloid Beta 61

3.3.3 Medicinal Plants Targeting Tau-Related Pathways 65

3.4 Natural Products with Proven Anti-Alzheimer’s Activity 66

3.5 Conclusion 66

References 70

4 Effects of Medicinal Plants and Phytochemicals on Schizophrenia 81
Nithya Rani Raju, S.V. Rashmitha, S. Pavithra, Erika Amparo Torres, M. Kishor, and Raghu Ram Achar

4.1 Mechanisms of Action Related to Schizophrenia 81

4.1.1 Vesicular Monoamine Transporters 82

4.1.2 Dopamine Receptors/Transporters 82

4.1.3 Serotonin Receptors/Transporters 83

4.1.4 Glutamate Transporters 84

4.1.5 Gamma-Aminobutyric Acid Level/Receptors 84

4.1.6 Genes Related to Schizophrenia 87

4.2 Ayurvedic Plants Used as Treatment for Schizophrenia and Related Psychoses 88

4.2.1 Allium cepa 88

4.2.2 Acorus calamus. Linn 88

4.2.3 Bacopa monnieri 89

4.2.4 Carum carvi 89

4.2.5 Celastrus panicutalus 90

4.2.6 Centella asiatica 90

4.2.7 Convolvulus pluricaulis 91

4.2.8 Coriandrum sativum 91

4.2.9 Cuminum cyminum L. 91

4.2.10 Cyperus Rotundus Linn. 92

4.2.11 Eclipta alba 92

4.2.12 Ficus religiosa 92

4.2.13 Glycyrrhiza glabra 93

4.2.14 Moringa oleifera 93

4.2.15 Nigella sativa 93

4.2.16 Piper longum 94

4.2.17 Rauwolfia serpentina 94

4.2.18 Sesbania grandiflora 95

4.2.19 Sphaeranthus indicus 95

4.2.20 Tinospora cordifolia 96

4.2.21 Valeriana wallichii 96

4.2.22 Withania somnifera 97

4.2.23 Ziziphus mauritiana 97

4.3 Conclusion 97

References 122

5 Drug Discovery from Medicinal Plants and Phytochemicals against Neuropathic Pain 137
Santwana Palai, Shyam S. Kesh, and Mithun Rudrapal

5.1 Mechanisms of Neuropathic Pain 138

5.2 Animal Models for Studying Neuropathic Pain 139

5.2.1 Streptozotocin-Induced Diabetes 139

5.2.2 High-Fat Diet 139

5.2.3 Sciatic Nerve Injury 139

5.2.4 Chemotherapy-Induced Peripheral Neuropathy 139

5.3 Medicinal Plants and Phytochemicals against Neuropathic Pain 139

5.4 Role of Plants and Phytochemicals in Different Neuropathic Pain Models 140

5.4.1 Diabetic Neuropathy 140

5.4.2 Chemotherapy-Induced Peripheral Neuropathy 153

5.4.3 Sciatic Nerve Chronic Constriction Injury 154

5.4.4 Other Neuropathic Pain Signaling Pathways 154

5.5 Future Perspectives 155

5.6 Conclusion 155

References 155

6 Brain Function, Stroke, and Medicinal Herbs 161
Shahira M. Ezzat, Rana Marghany, Nehal El Mahdi, and Mohamed A. Salem

6.1 Brain Function and Stroke 161

6.2 Strategies for Treatment of Ischemic Stroke 162

6.2.1 Neuroprotective Strategy 162

6.2.1.1 Oxidative Stress Targeting 162

6.2.1.2 Excitotoxicity Targeting 162

6.2.1.3 Apoptosis Targeting 162

6.2.2 Neurorestorative Strategy 162

6.2.2.1 Angiogenesis Targeting 162

6.2.2.2 Neurogenesis Targeting 163

6.3 Medicinal Plants for the Treatment of Stroke 163

6.4 Natural Products for the Treatment of Stroke 165

6.5 Recent Applications of Nanomedicine for Treatment of Stroke 165

6.6 Conclusion 174

References 174

7 Plant-Based Analgesics 181
Gabriel O. Anyanwu and Dorathy O. Anzaku

7.1 Current Analgesic Drugs and Their Mechanisms of Action 182

7.2 Plant-Derived Lead Compounds with Analgesic Activities 182

7.2.1 Saponins and Terpenoids 184

7.2.2 Flavonoids 184

7.2.3 Alkaloids 184

7.2.4 Glycosides 185

7.3 Analgesic Effects of Medicinal Plants Found in Nigeria 185

7.4 Limitations of Plant-Based Analgesics 194

7.5 Future Directions and Perspective for Plant-Based Analgesics 194

7.6 Conclusion 194

References 195

8 Medicinal Plants and Phytochemicals against Depression 203
Neelma Munir, Ayesha Qamar, Maria Hasnain, Huma Waqif, Maria Hanif, Zirwa Sarwar, and Shagufta Naz

8.1 Causes of Depression 203

8.1.1 Genetic Factors 204

8.1.2 Environmental Factors 204

8.1.3 Risk Factors for Depression 204

8.2 Symptoms of Depression 204

8.2.1 Symptoms of Depression in Men 204

8.2.2 Symptoms of Depression in Women 205

8.2.3 Symptoms of Depression in Children 205

8.3 Diagnosis of Depression 205

8.4 Types of Depression 205

8.4.1 Major Depressive Disorder 206

8.4.2 Persistent Depressive Disorder 206

8.4.3 Depression with Psychosis 206

8.4.4 Depression in Pregnancy 207

8.5 Treatment of Depression 207

8.5.1 Natural Treatment for Depression 208

8.5.2 Medicinal Plants as Antidepressants 208

8.5.2.1 Lavandula officinalis 209

8.5.2.2 Kaempferia parviflora 210

8.5.2.3 Asparagus racemosus 211

8.5.2.4 Passiflora foetida 211

8.5.2.5 Momordica charantia 212

8.5.2.6 Bacopa monniera 212

8.5.2.7 Valeriana officinalis 212

8.5.2.8 Rhodiola rosea 212

8.5.2.9 Withania somnifera 212

8.5.2.10 Matricaria recutita 213

8.5.2.11 Ginkgo biloba 213

8.6 Conclusion 213

References 214

9 Anti-inflammatory Agents from Medicinal Plants 219
Bui T. Tung, Tran V. Linh, Trinh P. Thao, and Nguyen D. Thuan

9.1 Role of Neuroinflammation in Neurodegenerative Diseases 220

9.2 Neuroinflammatory Drugs 222

9.3 Medicinal Plants as Sources of Anti-inflammatory Agents 231

9.3.1 Allium sativum 232

9.3.2 Azadirachta indica 233

9.3.3 Cassia tora 233

9.3.4 Euphorbia hirta 233

9.3.5 Garcinia mangostana 234

9.3.6 Punica granatum 235

9.3.7 Ricinus communis 235

9.3.8 Scutellaria baicalensis 236

9.3.9 Solanum melongena 237

9.4 Bioactive Compounds as Anti-inflammatory Agents 237

9.4.1 Curcumin 238

9.4.2 Eugenol 238

9.4.3 Epigallocatechin 3-Gallate 239

9.4.4 Guggulsterone 240

9.4.5 Resveratrol 240

9.4.6 Thymoquinone 241

9.5 Conclusion 241

References 242

10 Plant-Based Products and Phytochemicals against Viral Infections of the Central Nervous System 251
Santwana Palai, Shyam S. Kesh, and Mithun Rudrapal

10.1 Viral Infections of the Central Nervous System 252

10.2 Plant and Phytochemicals as Antiviral Agents for Central Nervous System Viral Infections 252

10.2.1 SARS Cov-2 Virus 252

10.2.2 Japanese Encephalitis Virus 262

10.2.3 West Nile Virus 263

10.2.4 Tick-Borne Encephalitis Virus 264

10.2.5 Herpes Simplex Virus 264

10.2.6 Rabies Virus 265

10.2.7 Varicella Zoster Virus 266

10.2.8 Poliomyelitis Virus 266

10.2.9 Human Immunodeficiency Virus 267

10.3 Controlling Vectors of Viral Diseases of the Central Nervous System 268

10.4 Future Perspectives 269

10.5 Conclusion 269

References 270

11 Fruits and Nutraceuticals for the Prevention and Treatment of Central Nervous System Disorders 273
Abeer M. A. El Sayed and Chukwuebuka Egbuna

11.1 Fruits for Cognition and Brain Health 274

11.1.1 Aegle marmelos 274

11.1.2 Citrullus lanatus 274

11.1.3 Citrus grandis 274

11.1.4 Phoenix sylvestris 274

11.1.5 Phyllanthus emblica 274

11.1.6 Emblica officinalis 275

11.1.7 Solanum torvum 275

11.1.8 Terminalia chebula 275

11.1.9 Blackberries 275

11.1.10 Blueberries 276

11.1.11 Strawberries 276

11.1.12 Raspberries 276

11.1.13 Cherries 276

11.1.14 Oranges 277

11.1.15 Plums 277

11.1.16 Prunes 277

11.1.17 Red Grapes 277

11.1.18 Pomegranates 278

11.2 Nutraceuticals in Ameliorating Neurodegeneration 278

11.2.1 Quercetin and Kaempferol 278

11.2.2 Withanine 278

11.2.3 Asiatic Acid 279

11.2.4 Bhilavanol A and B 279

11.3 Nutraceuticals in Alzheimer’s Disease 279

11.3.1 Flavonoids 279

11.3.2 Apigenin 280

11.3.3 Genistein, Daidzein, Glycitin 280

11.3.4 Resveratrol 280

11.3.5 Curcumin 280

11.3.6 Carotenoids 280

11.3.7 Crocin 281

11.3.8 Carnosic Acid and Rosmarinic Acid 281

11.3.9 Alkaloids 281

11.4 Nutraceuticals in Parkinson’s Disease 281

11.4.1 Vitamins: Folate, Cobalamin, Pyridoxin 281

11.5 Nutraceuticals in Depression 283

11.6 Nutraceuticals in Psychotic Disorders 283

11.7 Conclusion 283

References 284

12 Neurorestorative Potential of Medicinal Plants and Their hytochemicals 291
Babatunde O. Adetuyi, Kehinde A. Odelade, Grace O. Odine, Oluwatosin A. Adetuyi, Semiloore O. Omowumi, Olubanke O. Ogunlana, and Chukwuebuka Egbuna

12.1 Therapeutic Value of Some Medicinal Plants and their Importance 292

12.2 Types of Medicinal Plants and Their Uses 293

12.3 Phytochemicals 293

12.4 Phytochemical Constituents in Some Medicinal Plants 295

12.4.1 Onions 295

12.4.1.1 Phytochemical Constituents in Onions 295

12.4.2 Turmeric 296

12.4.2.1 Phytochemical Constituents in Turmeric 296

12.4.3 Ginger 297

12.4.3.1 Phytochemical Constituents in Ginger 297

12.4.4 Garlic 297

12.4.4.1 Phytochemical Constituents in Garlic 298

12.5 The Brain 298

12.5.1 Brain Physiology 299

12.5.1.1 Neurotransmitters and Receptors 299

12.5.1.2 Electrical Activity 300

12.5.1.3 Metabolism 300

12.5.2 Functions of the Brain 300

12.5.2.1 Perception 300

12.5.3 Motor Control 300

12.5.4 Homeostasis 301

12.5.5 Motivation 301

12.5.6 Learning and Memory 302

12.6 Brain Conditions 302

12.7 Protective Effects of Medicinal Plants on the Brain 303

12.7.1 Crocus sativus 303

12.7.1.1 Medicinal Properties of Crocus sativus 303

12.7.2 Nigella sativa 304

12.7.2.1 Medicinal Properties of Nigella sativa 304

12.7.3 Coriandrum sativum 304

12.7.3.1 Medicinal Properties of Coriandrum sativum 304

12.7.4 Ferula assafoetida 304

12.7.4.1 Medicinal Properties of Ferula assafoetida 304

12.7.5 Thymus vulgaris 305

12.7.5.1 Medicinal Properties of Thymus vulgaris 305

12.7.6 Curcuma longa 305

12.7.6.1 Medicinal Properties of Curcuma longa 305

12.8 Conclusion 305

References 306

13 Neurotransmitter Modulation by Phytochemicals 311
Prachee Dubey and Kanti Bhooshan Pandey

13.1 Sources, Structures, and Classifications of Phytochemicals 311

13.2 Neurotransmitters and Their Functions 316

13.3 Modulation of Cholinergic Signaling by Phytochemicals 317

13.3.1 Effect of Phytochemicals on Acetylcholinesterase 318

13.4 Effect of Phytochemicals on GABAergic Signaling 318

13.5 Effect of Phytochemicals on Glutamatergic Signaling 319

13.6 Modulation of Serotonergic and Dopaminergic Signaling by Phytochemicals 320

13.7 Conclusion 321

Acknowledgments 321

References 321

14 Antipyretic Agents from Plant Origins 327
Kamoru A. Adedokun, Sikiru O. Imodoye, Akeem O. Busari, Malik A. Sanusi, Abdullah Olawuyi, and Maroof G. Oyeniyi

14.1 Pyrexia Development, Its Mechanisms, and the Roles of Plant Metabolites as Antipyretics 328

14.1.1 Fever Development 328

14.1.2 Mechanisms of Fever Development 328

14.1.2.1 Humoral Pathway 328

14.1.2.2 Neural Pathway 330

14.1.3 Roles of Plant Metabolites as Antipyretics 331

14.2 Antipyretic Agents of Plant Origin 341

14.2.1 Arbutus andrachne (Family Ericaceae) 341

14.2.2 Berberis spp. (Family Berberidaceae) 343

14.2.3 Cassia fistula Linn. (Family Caesalpiniaceae) 343

14.2.4 Crataeva magma (Family Capparidaceae) 344

14.2.5 Echinops kebericho M. (Family Asteraceae) 345

14.2.6 Enicostema littorale (Family Gentianaceae) 346

14.2.7 Piper nigrum (Family Piperaceae) 346

14.2.8 Viola betonicifolia (Family Violaceace) 347

14.3 Conclusion and Future Perspectives 348

References 349

15 Medicinal Herbs against Central Nervous System Disorders 359
Ahmed Olatunde, Neelma Munir, Godwin Anywar, Maria Hanif, Huma Waqif, Habibu Tijjani, Barbara Sawicka, and Akram Muhammad

15.1 Medicinal Plants as Interventions for Central Nervous System Disorders 360

15.2 Some Medicinal Plants with Neuroprotective Action on Central Nervous System Disorders 362

15.2.1 Desmodium adscendens, Cleome rutidosperma, Withania somnifera, and Panax ginseng 362

15.2.2 Baccopa monnieri and Rauvolfia serpentina 363

15.2.3 Avena sativa and Annona squamosa 364

15.2.4 Acorus calamus, Emblica officinalis, and Strychnos nux-vomica 365

15.3 Some Central Nervous System Disorders and Medicinal Plant Interventions 366

15.3.1 Depression 366

15.3.1.1 Family Amaryllidaceae - Allium cepa 366

15.3.1.2 Family Plantaginaceae - Bacopa monnieri 367

15.3.1.3 Family Fabaceae - Glycyrrhiza glabra 368

15.3.1.4 Family Lamiaceae - Rosmarinus officinalis 368

15.3.1.5 Family Zingiberaceae - Zingiber officinale 369

15.3.2 Epilepsy 369

15.3.2.1 Family Hypoxidaceae - Hypoxis hemerocallidea 370

15.3.2.2 Family Piperaceae - Piper methysticum 371

15.3.2.3 Family Caprifoliaceae - Valeriana officinalis 372

15.3.2.4 Family Phyllanthaceae - Bridelia micrantha 372

15.3.2.5 Family Rubiaceae - Sarcocephalus latifolius 372

15.3.3 Huntington’s Disease 372

15.3.3.1 Family Ginkgoaceae - Ginkgo biloba 373

15.3.3.2 Family Araliaceae - Panax ginseng 373

15.3.3.3 Family Asteraceae - Calendula officinalis 373

15.3.3.4 Family Primulaceae - Embelia ribes 374

15.3.3.5 Family Theaceae - Camellia sinensis 374

15.4 Some Mechanistic Actions of Medicinal Herbs against Central Nervous System Disorders 374

15.4.1 In Vitro Studies 375

15.4.2 In Vivo Studies 375

15.5 Conclusion 376

References 376

16 Important Antihistaminic Plants and Their Potential Role in Health 385
Salwa Bouabdallah, Hagar A. Sobhy, Babatunde O. Adetuyi, Omayma A. Eldahshan, and Chukwuebuka Egbuna

16.1 Antihistaminic Plants 386

16.1.1 Family Acanthaceae 386

16.1.2 Family Amaranthaceae 386

16.1.3 Family Amaryllidaceae 387

16.1.4 Family Asclepiadaceae 387

16.1.5 Family Asteraceae 387

16.1.6 Family Caesalpiniaceae 387

16.1.7 Family Casuarinaceae 387

16.1.8 Family Cruciferae 388

16.1.9 Family Cucurbitacea 388

16.1.10 Family Euphorbiaceae 388

16.1.11 Family Fabaceae 388

16.1.12 Family Lamiaceae 388

16.1.13 Family Moraceae 388

16.1.14 Family Myricaceae 388

16.1.15 Family Myrtaceae 389

16.1.16 Family Olacaceae 389

16.1.17 Family Piperaceae 389

16.1.18 Family Poaceae 389

16.1.19 Family Polygalaceae 390

16.1.20 Family Scrophulariaceae 390

16.1.21 Family Verbenaceae 390

16.1.22 Family Zygophylaceae 390

16.2 Bioactive Compounds with Antihistaminic Activities 390

16.3 Conclusion 394

References 394

17 Effect of Plant-Based Anticonvulsant Products and Phytochemicals 397
Muhammad Akram, Sadia Zafar, Hassan Shah, Zerfishan Riaz, Khawaja S. Ahmad, Muhammad Riaz, Naveed Munir, Muhammad Jahangeer, Imtiaz M. Tahir, Michael P. Okoh, Muhammad A. Ishfaq, David Pérez-Jorge, Vanessa de Andrade Royo, Muhammad M. Aslam, Chukwuebuka Egbuna, and Chukwunonso O. Igboekwe

17.1 Types of Epileptic Seizures 398

17.2 Basic Mechanisms of Epilepsy 398

17.3 Epilepsy and Oxidative Stress 400

17.4 Epilepsy and Inflammation 401

17.5 Tests for Seizure Induction 402

17.6 Medicinal Plants Used to Treat Epilepsy 402

17.7 Conclusion 403

References 407

18 Application of Nanophytomedicine for the Treatment of Central Nervous System Disorders 413
Nilesh Rarokar, Nilambari Gurav, and Shailendra Gurav

18.1 Neurodegenerative Disease and the Blood-Brain Barrier 414

18.1.1 Problems Associated with Treatment of Central Nervous System Disorders 414

18.1.2 Role of the Blood-Brain Barrier 415

18.1.3 Blood-Brain Barrier Crossing Mechanism 415

18.1.4 Phytomedicine/Neuroprotective Drugs Reported for Central Nervous System Disorders 416

18.2 Nano Approaches to Central Nervous System Drug Delivery 418

18.2.1 Types of Nanocarriers 418

18.2.1.1 Liposomes 418

18.2.1.2 Micelles 418

18.2.1.3 Solid Lipid Nanoparticles 418

18.2.1.4 Phytosomes 419

18.2.1.5 Nanosponges 419

18.2.1.6 Nanoemulsions 419

18.2.1.7 Dendrimers 420

18.2.1.8 Nanoparticles 420

18.2.2 Techniques/Preparation/Methods 420

18.2.3 Mechanism of Action of Drug Release 421

18.3 Nanophytomedicine for Treatment of Central Nervous System Disorders 422

18.3.1 Alzheimer’s Disease 422

18.3.2 Parkinson’s Disease 422

18.3.3 Epilepsy 423

18.3.4 Stroke 423

18.3.5 Huntington’s Disease 424

18.3.6 Multiple Necrosis 425

18.3.7 Tumors/Gliomas/Glioblastomas 425

18.4 Challenges in Nanophytomedicine 425

18.5 Conclusion 426

References 426

Index 431

Authors

Chukwuebuka Egbuna Chukwuemeka Odumegwu Ojukwu University, Nigeria. Mithun Rudrapal Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research (Affiliated to Savitribai Phule Pune University), Pune, Maharashtra, India.