+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Optical Switching. Device Technology and Applications in Networks. Edition No. 1

  • Book

  • 384 Pages
  • October 2022
  • John Wiley and Sons Ltd
  • ID: 5839645
OPTICAL SWITCHING

Comprehensive coverage of optical switching technologies and their applications in optical networks

Optical Switching: Device Technology and Applications in Networks delivers an accessible exploration of the evolution of optical networks with clear explanations of the current state-of-the-art in the field and modern challenges in the development of Internet-of-Things devices. A variety of optical switches - including MEMS-based, magneto, photonic, and SOA-based - are discussed, as is the application of optical switches in networks.

The book is written in a tutorial style, easily understood by both undergraduate and graduate students. It describes the fundamentals and recent developments in optical switch networks and examines the architectural and design challenges faced by those who design and construct emerging optical switch networks, as well as how to overcome those challenges. The book offers ways to assess and analyze systems and applications, comparing a variety of approaches available to the reader. It also provides: - A thorough introduction to switch characterization, including optical, electro optical, thermo optical, magneto optical, and acoustic-optic switches - Comprehensive explorations of MEMS-based, SOA-based, liquid crystal, photonic crystal, and optical electrical optical (OEO) switches - Practical discussions of quantum optical switches, as well as nonlinear optical switches - In-depth examinations of the application of optical switches in networks, including switch fabric control and optical switching for high-performance computing

Perfect for researchers and professionals in the fields of telecommunications, Internet of Things, and optoelectronics, Optical Switching: Device Technology and Applications in Networks will also earn a place in the libraries of advanced undergraduate and graduate students studying optical networks, optical communications, and sensor applications.

Table of Contents

Preface xvi

About the Editors xviii

List of Contributors xix

Part A Introduction 1

Introduction 3
Sandip Nandi and Dalia Nandi

A. Optical Communication Networks 3

A.1 Historical Perspective 3

A.2 Essential Background 6

A.2.1 Optical Networks 6

A.2.2 SONET/SDH 6

A.2.3 Multiplexing 7

A.2.4 All-Optical Networks 7

A.2.5 Optical Transport Network 8

B. Optical Switching in Networks 8

B.1 Historical Perspective 8

B.2 Essential Background 9

B.2.1 Optical Switching in Networks 9

B.2.2 Optical Switching in Practice 9

B.2.3 Optical Switch Technology 10

C. Organization of This Book 10

Bibliography 11

Part B Switch Characterization 13

1 Optical Switches 15
Rajan Agrahari, Sambit Kumar Ghosh, and Somak Bhattacharyya

1.1 Introduction 15

1.2 Electro-Optical Switching 16

1.2.1 Working Principle of Electro-Optical Switches 16

1.2.2 Realization of Electro-Optical Switches 17

1.3 Acoustic-Optical Switching 18

1.3.1 Types of Acoustic-Optical Switching 18

1.3.2 Acoustic-Optical Device Materials and Applications 19

1.4 Thermo-Optical Switching 19

1.4.1 Working Principle of Thermo-Optical Switches 20

1.4.2 Realization of Thermo-Optical Switches 20

1.4.3 Thermo-Optical Switch Materials and Applications 21

1.5 Liquid Crystal-Optical Switching 21

1.5.1 Types of Liquid Crystal-Optical Switches 21

1.5.2 Liquid Crystal-Optical Switch Applications 22

1.6 Photonic Crystal Optical Switching 22

1.7 Semiconductor Optical Amplifier (SOA) Optical Switching 23

1.8 Magneto-Optical (MO) Optical Switching 25

1.9 Micro Electro-Mechanical Systems (MEMS) Optical Switching 25

1.10 Metasurfaces Switches 26

1.11 Conclusion 26

Bibliography 27

2 Electro-Optic Switches 31
Arpita Adhikari, Joydip Sengupta, and Arijit De

2.1 Introduction 31

2.2 Operating Principles 32

2.2.1 Operating Principles of the Single-Mode Switch 32

2.2.2 Operating Principles of the Multimode Switch 32

2.3 Materials for the Fabrication of Electro-Optic Switch 34

2.3.1 Ferroelectric Materials 34

2.3.2 Compound Semiconductors 35

2.3.3 Polymers 35

2.4 Device Structures of Electro-Optical Switches 36

2.4.1 1 × 1 Switch 36

2.4.2 1 × 2 Switch 37

2.4.3 2 × 2 Switch 39

2.4.4 2 × 3 Switch 40

2.4.5 3 × 2 Switch 41

2.4.6 3 × 3 Switch 42

2.4.7 1 × 4 Switch 42

2.4.8 2 × 4 Switch 43

2.5 Conclusions 43

Bibliography 44

3 Thermo-Optical Switches 47
Fulong Yan, Xuwei Xue, and Chongjin Xie

3.1 History of Thermal Optical Switching 47

3.2 Principles of Thermo-Optic Switch 47

3.2.1 Thermo-Optic Effect 47

3.2.2 Trade-Off Between Switching Time and Power Consumption 48

3.2.3 Merits of Thermo-Optic Switch 49

3.3 Category 49

3.3.1 Material 49

3.3.2 Implementation Principle 51

3.3.3 Device Architecture 51

3.4 Scalability 52

3.4.1 Binary Tree 52

3.4.2 Modified Crossbar 53

3.4.3 Benes 54

3.5 Application Scenarios 54

Bibliography 55

4 Magneto-Optical Switches 57
K. Sujatha

4.1 Introduction 57

4.1.1 Types of Optical Switch 57

4.1.2 How Does an Optical Switch Work? 59

4.1.3 Applications of Optical Switches 59

4.2 All-Optical Switch 60

4.2.1 Why is an All-Optical Switch Useful? 62

4.3 Magneto-Optical Switches 64

4.3.1 Magneto-Optical Switch Features 64

4.3.2 Principles of Magneto-Optical Switches 65

4.3.2.1 The Design Core of the Magneto-Optical Switch 65

4.3.3 Magneto-Optic Effect 66

4.4 Faraday Rotation 68

4.4.1 Phenomenological Model 68

4.4.2 Atomic Model 68

Bibliography 70

Further Reading 70

5 Acousto-Optic Switches 73
Sudipta Ghosh, Chandan Kumar Sarkar, and Manash Chanda

5.1 Introduction 73

5.2 Fundamentals of Acousto-Optic Effect 73

5.3 Acousto-Optic Diffraction 74

5.4 Raman-Nath Diffraction 76

5.5 Bragg Diffraction 77

5.6 Principle of Operation of AO Switches 78

5.7 Acousto-Optic Modulator 80

5.7.1 Acousto-Optic Q-Switching 81

5.7.2 Telecommunication Network 82

5.8 Recent Trends and Applications 83

5.8.1 Emerging Spatial Mode Conversion in Few-Mode Fibers 83

5.8.2 Lithium Niobate Thin Films 84

5.8.3 Optical Fiber Communication and Networking 85

Bibliography 86

6 MEMS-based Optical Switches 93
Kalyan Biswas and Angsuman Sarkar

6.1 Introduction 93

6.2 Micromachining Techniques 94

6.2.1 Bulk Micromachining 95

6.2.2 Surface Micromachining 95

6.3 Switch Architectures 97

6.3.1 One-Dimensional Switches 97

6.3.2 Two-Dimensional MEMS Switches 97

6.3.3 Three-Dimensional MEMS Switches 98

6.4 Mechanisms of Actuations 100

6.4.1 Electrostatic Actuation 100

6.4.2 Magnetic Actuation 100

6.4.3 Thermal Actuation 100

6.4.4 Piezoelectric Actuation Mechanisms 100

6.4.5 Other Actuation Mechanisms 101

6.5 Optical Switch Parameters 101

6.5.1 Switching Time 102

6.5.2 Insertion Loss 102

6.5.3 Crosstalk 102

6.5.4 Wavelength 102

6.5.5 Power Consumption 102

6.6 Challenges 103

6.6.1 Optical Beam Divergence 103

6.6.2 Angular Control 103

6.6.3 Reliability of Optical MEMS 103

6.7 Conclusion 104

Bibliography 104

7 SOA-based Optical Switches 107
Xuwei Xue, Shanguo Huang, Bingli Guo, and Nicola Calabretta

7.1 Introduction 107

7.2 SOA Structure 107

7.2.1 Active Region 108

7.2.2 Inter-Band Versus Intra-Band Transition 109

7.2.3 Transparency Threshold 110

7.2.4 Gain Nonlinearity 111

7.2.5 Polarization-Insensitive SOA 111

7.2.6 Noise in SOA 112

7.3 Design Criteria of SOA-Based Switch 113

7.3.1 Effect of Doping on Gain Dynamics 113

7.3.2 Gain Dynamic for SOA 115

7.3.2.1 Bulk-Active Regions 116

7.3.2.2 Quantum Well/Multi-Quantum Well (MQW) Active Regions 116

7.3.2.3 Quantum Dots 116

7.3.3 Noise Suppression 117

7.3.4 Scalability 118

7.4 Advancements on SOA-Based Switch 120

7.5 Networks Employing SOA-Based Switch 122

7.5.1 Metro-Access Network 122

7.5.2 RF Network 122

7.5.3 Silicon Photonic Switching 122

7.5.4 Data Center Network 123

7.6 Discussion and Future Work 123

Bibliography 124

8 Liquid Crystal Switches 129
Swarnil Roy and Manash Chanda

8.1 Introduction 129

8.2 Liquid Crystal and Its Properties 131

8.3 LC Structures for Optical Switching 131

8.3.1 Twisted Nematic (TN) cells 131

8.3.2 Surface-Stabilized Ferroelectric Liquid Crystal (SSFLC) Cells 133

8.3.3 Spatial Light Modulator (SLM) Cells 133

8.4 Liquid Crystal Switches 134

8.4.1 Optical Crystal Switching Architectures 134

8.4.2 Switches Based on Polarization 135

8.4.2.1 Performance Analysis of Polarization-Based Switch Architecture 136

8.4.3 LC Amplitude and Phase Modulator 138

8.4.4 LC-Based Wavelength-Selective Switches (WSS) 140

8.4.4.1 WSS Based on LCOS 141

8.5 The Future of LC switches 141

8.5.1 Liquid Crystal Photonic Crystal Fibers 141

8.5.2 Ring Resonators with LC 142

Bibliography 142

9 Photonic Crystal All-Optical Switches 147
Rashmi Kumari, Anjali Yadav, and Basudev Lahiri

9.1 Idea of Photonics 147

9.2 Principles of Photonic Crystal All-Optical Switches (AOS) 148

9.3 Growth and Characterization of Optical Quantum Dots 150

9.3.1 Integration of PhCs-Based AOS with Optical Quantum Dots (QDs) 150

9.3.2 Growth and Characterization of Quantum Dots 152

9.3.2.1 Growth of Quantum Dots 152

9.3.2.2 Colloidal Solution Via Chemical Synthesis 152

9.3.2.3 Self-Assembly Technique 153

9.3.2.4 Characterization of Quantum Dots 154

9.3.2.5 Photoluminescence Spectroscopy 154

9.3.2.6 UV-Vis Spectroscopy 154

9.4 Design and Fabrication 155

9.4.1 Sample Preparation 155

9.4.2 Lithography 155

9.4.2.1 Electron Beam Lithography (EBL) 155

9.4.2.2 Optical UV Lithography 155

9.4.3 Etching 155

9.4.3.1 Wet Etching 155

9.4.3.2 Dry Etching 156

9.5 Device Structure and Performance Analysis of Photonic Crystal All-Optical Switches 156

9.6 Challenges and Recent Research Trends of Photonic Crystal All-Optical Switches 159

Bibliography 160

10 Optical-Electrical-Optical (O-E-O) Switches 165
Piyali Mukherjee

10.1 Introduction 165

10.2 Optical Switching Technologies: Working Principle 166

10.2.1 Optical-Electrical-Optical Switching 166

10.2.2 Optical Data Unit Switching 167

10.2.3 Reconfigurable Optical Add-Drop Multiplexer (ROADM)-Based Switching 168

10.2.4 A hybrid approach 169

10.3 Optical Transponders 169

10.3.1 WDM Transponders: An Introduction 169

10.3.2 Basic Working of Optical Transponders 170

10.3.3 Necessity of Optical Transponder (OEO) in WDM System 171

10.3.4 Applications of Optical Transponders 171

10.3.5 Network Structure with Optical Transponder 172

10.3.5.1 WDM Ring Employing Line Network 172

10.3.5.2 WDM Ring Employing Star Network 172

10.3.6 Differences Between Transponder, Muxponder, and Transceiver 173

10.3.7 Summary 174

10.4 Performance Analysis Study of All-Optical Switches, Electrical Switches, and Hybrid Switches in Networks 174

10.4.1 Introduction 174

10.4.2 Optical vs. Electrical vs. Hybrid Telecom Switches 175

10.4.3 Optical vs. Electrical vs. Hybrid Data Center Switches 177

10.4.4 Summary 179

10.5 Electrical and Optoelectronic Technology for Promoting Connectivity in Future Systems 179

10.5.1 CMOS Technology 180

10.5.2 Considerations for Selection of Interconnects 180

10.6 Conclusion 181

Bibliography 181

11 Quantum Optical Switches 185
Surabhi Yadav and Aranya B. Bhattacherjee

11.1 Introduction 185

11.2 Quantum Dot as an Optical Switch 186

11.2.1 Vertical Cavities 187

11.2.2 Power Density 189

11.3 Quantum Well as an Optical Switch 191

11.3.1 Optical Properties 191

11.3.2 Self-Electro-Optic-Effect Devices 193

11.4 Optomechanical Systems as Optical Switch 193

11.4.1 Optical Nonlinearity 193

11.4.2 Hybrid Optomechanics 195

11.4.3 Electro-opto Mechanics 198

11.5 Conclusion and Future Outlook 198

Bibliography 199

12 Nonlinear All-Optical Switch 203
Rajarshi Dhar, Arpan Deyasi, and Angsuman Sarkar

12.1 Introduction 203

12.2 Classification of All-Optical Switches 203

12.2.1 Thermo-Optical Switch 203

12.2.2 Acousto-Optic Switch 204

12.2.3 Liquid Crystal Optical Switch 206

12.2.4 Nonlinear Optical Switch 207

12.3 Classification of Nonlinear All-Optical Switches 207

12.3.1 Optical Coupler AOS 208

12.3.2 Sagnac Interferometer AOS 210

12.3.3 M-Z Interferometer AOS 210

12.3.4 Ring Resonator AOS 211

12.3.5 Fiber Grating AOS 212

12.4 Working Methodology of Different Types of Nonlinear All-Optical Switches 212

12.4.1 Optical Coupler AOS 212

12.4.1.1 Symmetric Coupler Working at Low Incident Power 213

12.4.1.2 Symmetric Coupler Working in High-Power Incident Light with SPM 214

12.4.1.3 Asymmetric Coupler Working in High-Power Pump Light with Cross-phase Modulation 217

12.4.2 Sagnac Interferometer AOS 219

12.4.2.1 Sagnac Interferometer (SI) Under Low Incident Power 219

12.4.2.2 Sagnac Interferometer AOS with Non-3dB Coupler 220

12.4.2.3 Sagnac Interferometer AOS in Cross-Phase Modulation 221

12.4.2.4 Sagnac Interferometer AOS with Optical Amplifier 222

12.4.3 M-Z Interferometer AOS 223

12.4.3.1 M-Z Interferometer AOS with Different Arm Materials 223

12.4.3.2 M-Z Interferometer All-Optical Switch with Different Arm Lengths 224

12.4.4 Ring Resonator AOS 225

12.4.4.1 AOS in M-Z Interferometer Coupled with SCRR 225

12.4.4.2 AOS in DCRR 227

12.4.5 Fiber Grating AOS 229

12.4.5.1 Single Nonlinear FBG AOS 229

12.4.5.2 Single Nonlinear LPFG AOS 231

12.5 Nanoscale AOS 233

12.6 Future Scope and Conclusion 234

Bibliography 235

13 Silicon Photonic Switches 239
Nadir Ali, Mohammad Faraz Abdullah, and Rajesh Kumar

13.1 Introduction 239

13.2 Performance Parameters 239

13.3 Silicon Photonic Platform 240

13.4 Physical Principles for Operation of Switches 241

13.4.1 Electro-optic Effect 242

13.4.2 Carrier Injection/Extraction 242

13.4.3 Thermo-optic Effect 242

13.4.4 All-optical Effect 243

13.5 Major Configurations 244

13.5.1 Directional Coupler 244

13.5.2 Microring Resonator 245

13.5.3 Mach-Zehnder Interferometer 246

13.5.4 Micro-Electro-Mechanical System 247

13.6 Hybrid Silicon Photonic Switches 248

13.6.1 III-V Materials 248

13.6.2 2D Materials 248

13.6.3 Phase Change Materials 249

13.7 Switch Fabrics Using MRR and MZI 252

13.8 Summary 252

Bibliography 252

Part C Application of Optical Switches in Networks 257

14 Switch Control: Bridging the Last Mile for Optical Data Centers 259
Nicola Calabretta and Xuwei Xue

14.1 Introduction 259

14.2 Switch Control Classification 260

14.2.1 Electrical Switch Control 260

14.2.2 Slow Optical Switch Control 261

14.2.3 Fast Optical Switch Control 262

14.3 Challenges for Switch Fabric Control 264

14.3.1 Scalable Control Plane 264

14.3.2 Precise Time Synchronization 265

14.3.3 Fast Burst Clock Data Recovery 266

14.3.4 Lack of Optical Buffer 267

14.3.5 Reliability 268

14.4 Switch Fabric Control: State of the Art 268

14.4.1 Predefined Control 268

14.4.2 SDN Control 268

14.4.3 Label Control 270

14.4.4 AI Control 271

Bibliography 272

15 Reliability in Optical Networks 277
Antony Gratus Varuvel and Rajendra Prasath

15.1 Introduction 277

15.2 RAMS in Optical Networks 278

15.3 Objectives 278

15.4 Life Cycle of a Product/Project 278

15.5 Preamble to RAMS 279

15.5.1 Reliability 280

15.5.2 Availability 281

15.5.3 Maintainability 281

15.5.4 System Safety 281

15.6 Significance of Reliability in Optical Interconnect Systems 282

15.7 Typical Components of Optical Circuitry 282

15.8 Generic Types of Optical System 284

15.8.1 Factors Influencing Reliability in Optical Networks 284

15.8.2 Initial Insight of Failures 284

15.9 Ensuring RAMS for the Optical System 285

15.9.1 Reliability - An Essential Insight 285

15.9.1.1 Typical Reliability Configurations 286

15.9.1.2 Reliability Metrics 287

15.9.1.3 Reliability Apportionment 292

15.9.1.4 Hardware Reliability Prediction 292

15.9.1.5 Software Reliability Prediction 294

15.9.1.6 Derating Analysis 294

15.9.1.7 Stress-Strength Interference Analysis 294

15.9.1.8 Reliability Estimation 295

15.9.1.9 Failure Mode Effects and Criticality Analysis 295

15.9.1.10 Failure Mode Effects Test Cases 296

15.9.1.11 Reliability Assessment/Demonstration 297

15.9.1.12 Human Error Analysis 297

15.9.1.13 Reliability Growth Analysis 297

15.9.1.14 Life Data Analysis 298

15.9.1.15 Physics of Failure 298

15.9.1.16 Design-Cost Trade-off 299

15.9.2 Availability Measures of Optical Networks 299

15.9.2.1 Availability Assessment 299

15.9.2.2 Reliability-Centered Maintenance 300

15.9.2.3 Competing Failure Modes 301

15.9.2.4 Warranty Analysis 301

15.9.2.5 Trend Analysis 302

15.9.3 Maintainability Aspects of Optical Networks 302

15.9.3.1 Maintainability Apportionment 302

15.9.3.2 Maintainability Assessment 303

15.9.3.3 Maintainability Demonstration 303

15.9.3.4 Maintainability Estimation/Evaluation 303

15.9.3.5 Maintainability Prediction 303

15.9.3.6 Maintenance Strategy [Plan/Philosophy] 303

15.9.3.7 Spare Parts Optimization 304

15.9.3.8 Failure Reporting and Corrective Action System 304

15.9.4 Optical Networks for Safety-Critical Applications 304

15.9.4.1 Common Cause Analysis 305

15.9.4.2 Common Mode Analysis 307

15.9.4.3 Fault Tree Analysis 307

15.9.4.4 Functional Hazard Analysis 308

15.9.4.5 Hazard and Operability Studies 308

15.9.4.6 Zonal Safety Analysis 309

15.9.4.7 Particular Risk Assessment 309

15.9.4.8 Software Risk Assessment 309

15.9.4.9 Event Tree Analysis 310

15.10 Process Control in Optical Components 310

15.11 Hardware - Software Interactions (HSI) in Optical Networks 310

15.12 Typical RAMS Realisation Plan for an Optical System 311

15.12.1 System-level RAMS Activities 311

15.12.2 Item-level RAMS Activities 312

15.13 Trade-off Factors of Optical Networks 314

15.14 Some Open Problems in RAMS-Optical System 314

15.15 Conclusion 314

Bibliography 315

16 Protection, Restoration, and Improvement 317
Arighna Basak and Angsuman Sarkar

16.1 Introduction 317

16.2 Objectives of Protection and Restoration 319

16.3 Current Fault Protection and Restoration Techniques 319

16.3.1 Link Protection 320

16.3.2 Path Protection 321

16.3.2.1 Current Fault Protection Techniques 321

16.3.2.2 Path Protection in Mesh Network 321

16.3.2.3 Path Protection in Ring Networks 322

16.3.2.4 OMS Link Protection-OMS-SPRing (Optical Multiplex Section-Shared Protection Ring) 322

16.3.2.5 Ring Loopback 323

16.3.2.6 Current Restoration Techniques 325

16.4 Energy Efficiency of Optical Switching Technology 326

16.5 Signal Quality Monitoring Techniques 327

16.6 Challenges and Recent Research Trends 328

16.7 Conclusion 330

Bibliography 330

17 Optical Switching for High-Performance Computing 335
Rajendra Prasath, Bheemappa Halavar, and Odelu Vanga

17.1 Introduction 335

17.2 Optical Switching 336

17.2.1 Basics of Optical Switching 336

17.2.2 Types of Optical Switching 337

17.2.2.1 Optical Packet Switching 337

17.2.2.2 Circuit Switching 338

17.3 Communication vs Computation 338

17.4 Path Reservation Algorithms 338

17.5 High-Performance Optical Switching and Routing 339

17.5.1 HPC Interconnection Challenges 339

17.5.2 Challenges in the Design of Optical Interconnection Network 340

17.6 Optical Switching Schemes for HPC Applications 340

17.6.1 Routing Scheme (Avoid Packet Loss, Contention, etc.) 341

17.6.1.1 Buffering Schemes 341

17.7 Security Issues in Optical Switching 342

17.7.1 Network Vulnerabilities 342

17.7.1.1 Eavesdropping 342

17.7.2 Jamming Attacks (or Types of Attacks) 343

17.8 Optical Switching - Interesting Topics 344

17.9 Conclusion 344

Bibliography 344

18 Software for Optical Network Modelling 347
Devlina Adhikari

18.1 Optical Networks 347

18.1.1 First Generation of Optical Networks 347

18.1.2 Second Generation of Optical Networks 348

18.1.2.1 Passive Optical Network 349

18.1.2.2 Elastic Optical Network 349

18.1.2.3 Cognitive Optical Network 349

18.1.2.4 Optical Neural Network 350

18.2 Simulation Tools for Planning of Optical Network 350

18.2.1 Network Simulators 350

18.2.1.1 NS-2 350

18.2.1.2 NS-3 351

18.2.1.3 OMNeT++ 351

18.2.1.4 OPNET 352

18.2.2 Physical Layer Simulation 352

18.3 New Technologies 353

18.3.1 Space Division Multiplexing (SDM) 353

18.3.2 Software-Defined Networking (SDN) 353

18.3.3 Artificial Intelligence/Machine Learning (AI/ML) 353

Bibliography 353

Index 359

Authors

Dalia Nandi Sandip Nandi Angsuman Sarkar Chandan Kumar Sarkar