+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

CO2 Hydrogenation Catalysis. Edition No. 1

  • Book

  • 320 Pages
  • April 2021
  • John Wiley and Sons Ltd
  • ID: 5839659

A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels 

Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products.   

The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: 

  • Offers a unique review of effective catalysts and the latest advances in CO2 conversion 
  • Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics 
  • Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis 
  • Highlights advances and challenges for future investigation 

Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals. 

Table of Contents

Preface xi

1 Introduction 1
Yuichiro Himeda and Matthias Beller

1.1 Direct Use of CO2 1

1.2 Chemicals from CO2 as a Feedstock 2

1.3 Application and Market Studies of CO2 Hydrogenation Products 4

1.3.1 Formic Acid/Formate 4

1.3.2 Methanol 4

1.3.3 Methanation 5

1.3.4 Energy Storage 6

1.4 Supply of Materials 6

1.4.1 CO2 Supply 6

1.4.2 Energy and H2 Supply 8

1.5 Political Aspect: Tax 9

1.6 Conclusion and Perspectives 9

References 10

2 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate by Using Precious Metal Catalysts 13
Wan-Hui Wang, Xiujuan Feng and Ming Bao

2.1 Introduction 13

2.2 Ir Complexes 14

2.2.1 Ir Complexes with N,N-ligands 14

2.2.1.1 Tautomerizable N,N-ligands with OH Groups 14

2.2.1.2 N,N-ligands with NH Group 30

2.2.1.3 Tautomerizable N,N-ligands with OH and NH Groups 32

2.2.1.4 Tautomerizable N,N-ligands with Amide Group 33

2.2.2 Ir Complexes with C,N- and C,C-ligands 34

2.2.3 Ir Complexes with Pincer Ligands 35

2.3 Ru Complexes 37

2.3.1 Ru Complexes with Phosphorous Ligands 38

2.3.2 Ru Complexes with N,N- and N,O-ligands 40

2.3.3 Ru Complexes with Pincer Ligands 41

2.4 Rh Complexes 46

2.5 Summary and Conclusions 49

References 49

3 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate with Non-precious Metal Catalysts 53
Luca Gonsalvi, Antonella Guerriero and Sylwia Kostera

3.1 Introduction 53

3.2 Iron-Catalyzed CO2 Hydrogenation 55

3.2.1 Non-pincer-Type Iron Complexes 56

3.2.2 Pincer-Type Iron Complexes 63

3.3 Cobalt-Catalyzed CO2 Hydrogenation 69

3.4 Nickel-Catalyzed CO2 Hydrogenation 73

3.5 Copper-Catalyzed CO2 Hydrogenation 77

3.6 Manganese-Catalyzed CO2 Hydrogenation 78

3.7 Other Non-precious Metals for CO2 Functionalization 81

3.8 Conclusions and Perspectives 85

References 86

4 Catalytic Homogeneous Hydrogenation of CO2 to Methanol 89
Sayan Kar, Alain Goeppert and G. K. Surya Prakash

4.1 Carbon Recycling and Methanol in the Early Twenty-First Century 89

4.2 Heterogeneous Catalysis for CO2 to Methanol 91

4.3 Homogeneous Catalysis - An Alternative for CO2 to Methanol 92

4.3.1 Benefits of Homogeneous Catalysis 92

4.3.2 CO2 Hydrogenation to Methanol Through Different Routes 92

4.3.3 The First Homogeneous System for CO2 Reduction to Methanol 93

4.3.4 Indirect CO2 Hydrogenation 94

4.3.5 Direct CO2 Hydrogenation 97

4.3.5.1 Through Formate Esters 97

4.3.5.2 Through Oxazolidinone or Formamides 100

4.3.6 CO2 to Methanol via Formic Acid Disproportionation 108

4.4 Conclusion 109

References 110

5 Theoretical Studies of Homogeneously Catalytic Hydrogenation of Carbon Dioxide and Bioinspired Computational Design of Base-Metal Catalysts 113
Xiuli Yan and Xinzheng Yang

5.1 Introduction 113

5.2 H2 Activation and CO2 Insertion Mechanisms 114

5.2.1 Hydrogen Activation 114

5.2.2 Insertion of CO2 115

5.3 Hydrogenation of CO2 to Formic Acid/Formate 118

5.3.1 Catalysts with Precious Metals 118

5.3.2 Catalysts with Non-noble Metals 128

5.4 Hydrogenation of CO2 to Methanol 133

5.5 Summary and Conclusions 142

References 145

6 Heterogenized Catalyst for the Hydrogenation of CO2 to Formic Acid or Its Derivatives 149
Kwangho Park, Gunniya Hariyanandam Gunasekar and Sungho Yoon

6.1 Introduction 149

6.2 Molecular Catalysts Heterogenized on the Surface of Grafted Supports 150

6.3 Molecular Catalysts Heterogenized on Coordination Polymers 157

6.4 Molecular Catalysts Heterogenized on Porous Organic Polymers 161

6.5 Concluding Remarks and Future Directions 172

References 173

7 Design and Architecture of Nanostructured Heterogeneous Catalysts for CO2 Hydrogenation to Formic Acid/Formate 179
Kohsuke Mori and Hiromi Yamashita

7.1 Introduction 179

7.2 Unsupported Bulk Metal Catalysts 180

7.3 Unsupported Metal Nanoparticle Catalysts 181

7.3.1 Metal Nanoparticles Without Stabilizers 181

7.3.2 Metal Nanoparticles Stabilized by Ionic Liquids 182

7.3.3 Metal Nanoparticles Stabilized by Reverse Micelles 183

7.4 Supported Metal Nanoparticle Catalysts 184

7.4.1 Metal Nanoparticles Supported on Carbon-Based Materials 184

7.4.2 Metal Nanoparticles Supported on Nitrogen-Doped Carbon 185

7.4.3 Metal Nanoparticles Supported on Al2O3 189

7.4.4 Metal Nanoparticles Supported on TiO2 191

7.4.5 Metal Nanoparticles Supported on Surface-Functionalized Materials 194

7.5 Embedded Single-Atom Catalysts 198

7.6 Summary and Conclusions 202

References 203

8 Heterogeneously Catalyzed CO2 Hydrogenation to Alcohols 207
Nat Phongprueksathat and Atsushi Urakawa

8.1 Introduction 207

8.2 CO2 Hydrogenation to Methanol - Past to Present 207

8.2.1 Syngas to Methanol 207

8.2.2 CO2 to Methanol 208

8.2.3 Thermodynamic Consideration - Chemical and Phase Equilibria 212

8.2.4 Catalyst Developments 215

8.2.5 Active Sites and Reaction Mechanisms: The Case of Cu/ZnO Catalysts 217

8.2.6 Beyond Industrial Cu/ZnO/Al2O3 Catalysts 223

8.3 CO2 Hydrogenation to Ethanol and Higher Alcohols - Past to Present 226

8.3.1 Background 226

8.3.2 Catalysts, Active Sites, and Reaction Mechanisms 227

8.3.2.1 Modified-Methanol Synthesis Catalyst 227

8.3.2.2 Modified Fischer-Tropsch Catalysts 230

8.3.2.3 Rhodium-Based Catalysts 231

8.3.2.4 Modified Molybdenum-Based Catalysts 232

8.4 Summary 232

References 233

9 Homogeneous Electrocatalytic CO2 Hydrogenation 237
Cody R. Carr and Louise A. Berben

9.1 CO2 Reduction to C─H Bond-Containing Compounds: Formate or Formic Acid 237

9.1.1 Survey of Catalysts 238

9.1.1.1 Group 9 Metal Complexes 238

9.1.1.2 Group 8 Metal Complexes 241

9.1.1.3 Nickel Complexes 244

9.1.1.4 Iron and Iron/Molybdenum Clusters 246

9.1.2 Hydride Transfer Mechanisms in CO2 Reduction to Formate 247

9.1.2.1 Terminal Hydrides 247

9.1.2.2 Bridging Hydrides 248

9.1.3 Kinetic Factors in Catalyst Design 249

9.1.3.1 Roles of Metal-Ligand Cooperation 249

9.1.3.2 Roles of Multiple Metal-Metal Bonds 250

9.1.4 Thermochemical Considerations in Catalyst Design 253

9.1.4.1 Selectivity for Formate over H2 as a Function of Hydricity 254

9.1.4.2 Solvent Dependence of Hydricity 255

9.2 Prospects in Electrocatalysis: CO2 Reduction Beyond Formation of One C─H

Bond 255

References 257

10 Recent Advances in Homogeneous Catalysts for Hydrogen Production from Formic Acid and Methanol 259
Naoya Onishi and Yuichiro Himeda

10.1 Introduction 259

10.2 Formic Acid Dehydrogenation 260

10.2.1 Organic Solvent Systems 260

10.2.1.1 Ru 260

10.2.1.2 Ir 266

10.2.1.3 Fe 268

10.2.2 Aqueous Solution Systems 270

10.2.2.1 Ru 270

10.2.2.2 Ir 272

10.3 Aqueous-phase Methanol Dehydrogenation 275

10.3.1.1 Ir 279

10.3.1.2 Non-precious Metals 279

10.4 Conclusion 281

References 282

Index 285

 

 

Prefacexi

1 Introduction 1

Yuichiro Himeda and Matthias Beller

1.1 Direct Use of CO2 1

1.2 Chemicals from CO2 as a Feedstock 2

1.3 Application and Market Studies of CO2 Hydrogenation Products 4

1.3.1 Formic Acid/Formate 4

1.3.2 Methanol 4

1.3.3 Methanation 5

1.3.4 Energy Storage 6

1.4 Supply of Materials 6

1.4.1 CO2 Supply 6

1.4.2 Energy and H2 Supply 8

1.5 Political Aspect: Tax 9

1.6 Conclusion and Perspectives 9

References 10

2 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate by Using Precious Metal Catalysts 13

Wan-Hui Wang, Xiujuan Feng and Ming Bao

2.1 Introduction 13

2.2 Ir Complexes 14

2.2.1 Ir Complexes with N,N-ligands 14

2.2.1.1 Tautomerizable N,N-ligands with OH Groups 14

2.2.1.2 N,N-ligands with NH Group 30

2.2.1.3 Tautomerizable N,N-ligands with OH and NH Groups 32

2.2.1.4 Tautomerizable N,N-ligands with Amide Group 33

2.2.2 Ir Complexes with C,N- and C,C-ligands 34

2.2.3 Ir Complexes with Pincer Ligands 35

2.3 Ru Complexes 37

2.3.1 Ru Complexes with Phosphorous Ligands 38

2.3.2 Ru Complexes with N,N- and N,O-ligands 40

2.3.3 Ru Complexes with Pincer Ligands 41

2.4 Rh Complexes 46

2.5 Summary and Conclusions 49

References 49

3 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate with Non-precious Metal Catalysts 53

Luca Gonsalvi, Antonella Guerriero and Sylwia Kostera

3.1 Introduction 53

3.2 Iron-Catalyzed CO2 Hydrogenation 55

3.2.1 Non-pincer-Type Iron Complexes 56

3.2.2 Pincer-Type Iron Complexes 63

3.3 Cobalt-Catalyzed CO2 Hydrogenation 69

3.4 Nickel-Catalyzed CO2 Hydrogenation 73

3.5 Copper-Catalyzed CO2 Hydrogenation 77

3.6 Manganese-Catalyzed CO2 Hydrogenation 78

3.7 Other Non-precious Metals for CO2 Functionalization 81

3.8 Conclusions and Perspectives 85

References 86

4 Catalytic Homogeneous Hydrogenation of CO2 to Methanol 89

Sayan Kar, Alain Goeppert and G. K. Surya Prakash

4.1 Carbon Recycling and Methanol in the Early Twenty-First Century 89

4.2 Heterogeneous Catalysis for CO2 to Methanol 91

4.3 Homogeneous Catalysis - An Alternative for CO2 to Methanol 92

4.3.1 Benefits of Homogeneous Catalysis 92

4.3.2 CO2 Hydrogenation to Methanol Through Different Routes 92

4.3.3 The First Homogeneous System for CO2 Reduction to Methanol 93

4.3.4 Indirect CO2 Hydrogenation 94

4.3.5 Direct CO2 Hydrogenation 97

4.3.5.1 Through Formate Esters 97

4.3.5.2 Through Oxazolidinone or Formamides 100

4.3.6 CO2 to Methanol via Formic Acid Disproportionation 108

4.4 Conclusion 109

References 110

5 Theoretical Studies of Homogeneously Catalytic Hydrogenation of Carbon

Dioxide and Bioinspired Computational Design of Base-Metal Catalysts 113

Xiuli Yan and Xinzheng Yang

5.1 Introduction 113

5.2 H2 Activation and CO2 Insertion Mechanisms 114

5.2.1 Hydrogen Activation 114

5.2.2 Insertion of CO2 115

5.3 Hydrogenation of CO2 to Formic Acid/Formate 118

5.3.1 Catalysts with Precious Metals 118

5.3.2 Catalysts with Non-noble Metals 128

5.4 Hydrogenation of CO2 to Methanol 133

5.5 Summary and Conclusions 142

References 145

6 Heterogenized Catalyst for the Hydrogenation of CO2 to Formic Acid or Its Derivatives 149

Kwangho Park, Gunniya Hariyanandam Gunasekar and Sungho Yoon

6.1 Introduction 149

6.2 Molecular Catalysts Heterogenized on the Surface of Grafted Supports 150

6.3 Molecular Catalysts Heterogenized on Coordination Polymers 157

6.4 Molecular Catalysts Heterogenized on Porous Organic Polymers 161

6.5 Concluding Remarks and Future Directions 172

References

173

7 Design and Architecture of Nanostructured Heterogeneous Catalysts for CO2 Hydrogenation to Formic Acid/Formate 179

Kohsuke Mori and Hiromi Yamashita

7.1 Introduction 179

7.2 Unsupported Bulk Metal Catalysts 180

7.3 Unsupported Metal Nanoparticle Catalysts 181

7.3.1 Metal Nanoparticles Without Stabilizers 181

7.3.2 Metal Nanoparticles Stabilized by Ionic Liquids 182

7.3.3 Metal Nanoparticles Stabilized by Reverse Micelles 183

7.4 Supported Metal Nanoparticle Catalysts 184

7.4.1 Metal Nanoparticles Supported on Carbon-Based Materials 184

7.4.2 Metal Nanoparticles Supported on Nitrogen-Doped Carbon 185

7.4.3 Metal Nanoparticles Supported on Al2O3 189

7.4.4 Metal Nanoparticles Supported on TiO2 191

7.4.5 Metal Nanoparticles Supported on Surface-Functionalized Materials 194

7.5 Embedded Single-Atom Catalysts 198

7.6 Summary and Conclusions 202

References 203

8 Heterogeneously Catalyzed CO2 Hydrogenation to Alcohols 207

Nat Phongprueksathat and Atsushi Urakawa

8.1 Introduction 207

8.2 CO2 Hydrogenation to Methanol - Past to Present 207

8.2.1 Syngas to Methanol 207

8.2.2 CO2 to Methanol 208

8.2.3 Thermodynamic Consideration - Chemical and Phase Equilibria 212

8.2.4 Catalyst Developments 215

8.2.5 Active Sites and Reaction Mechanisms: The Case of Cu/ZnO Catalysts 217

8.2.6 Beyond Industrial Cu/ZnO/Al2O3 Catalysts 223

8.3 CO2 Hydrogenation to Ethanol and Higher Alcohols - Past to Present 226

8.3.1 Background 226

8.3.2 Catalysts, Active Sites, and Reaction Mechanisms 227

8.3.2.1 Modified-Methanol Synthesis Catalyst 227

8.3.2.2 Modified Fischer-Tropsch Catalysts 230

8.3.2.3 Rhodium-Based Catalysts 231

8.3.2.4 Modified Molybdenum-Based Catalysts 232

8.4 Summary 232

References 233

9 Homogeneous Electrocatalytic CO2 Hydrogenation 237

Cody R. Carr and Louise A. Berben

9.1 CO2 Reduction to C─H Bond-Containing Compounds: Formate or Formic Acid 237

9.1.1 Survey of Catalysts 238

9.1.1.1 Group 9 Metal Complexes 238

9.1.1.2 Group 8 Metal Complexes 241

9.1.1.3 Nickel Complexes 244

9.1.1.4 Iron and Iron/Molybdenum Clusters 246

9.1.2 Hydride Transfer Mechanisms in CO2 Reduction to Formate 247

9.1.2.1 Terminal Hydrides 247

9.1.2.2 Bridging Hydrides 248

9.1.3 Kinetic Factors in Catalyst Design 249

9.1.3.1 Roles of Metal-Ligand Cooperation 249

9.1.3.2 Roles of Multiple Metal-Metal Bonds 250

9.1.4 Thermochemical Considerations in Catalyst Design 253

9.1.4.1 Selectivity for Formate over H2 as a Function of Hydricity 254

9.1.4.2 Solvent Dependence of Hydricity 255

9.2 Prospects in Electrocatalysis: CO2 Reduction Beyond Formation of One C─H

Bond 255

References 257

10 Recent Advances in Homogeneous Catalysts for Hydrogen Production

from Formic Acid and Methanol 259

Naoya Onishi and Yuichiro Himeda

10.1 Introduction 259

10.2 Formic Acid Dehydrogenation 260

10.2.1 Organic Solvent Systems 260

10.2.1.1 Ru 260

10.2.1.2 Ir 266

10.2.1.3 Fe 268

10.2.2 Aqueous Solution Systems 270

10.2.2.1 Ru 270

10.2.2.2 Ir 272

10.3 Aqueous-phase Methanol Dehydrogenation 275

10.3.1.1 Ir 279

10.3.1.2 Non-precious Metals 279

10.4 Conclusion 281

References 282

Index285

 

Authors

Yuichiro Himeda