+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Electronic Circuits with MATLAB, PSpice, and Smith Chart. Edition No. 1

  • Book

  • 880 Pages
  • March 2020
  • John Wiley and Sons Ltd
  • ID: 5840161

Provides practical examples of circuit design and analysis using PSpice, MATLAB, and the Smith Chart

This book presents the three technologies used to deal with electronic circuits: MATLAB, PSpice, and Smith chart. It gives students, researchers, and practicing engineers the necessary design and modelling tools for validating electronic design concepts involving bipolar junction transistors (BJTs), field-effect transistors (FET), OP Amp circuits, and analog filters.

Electronic Circuits with MATLAB®, PSpice®, and Smith Chart presents analytical solutions with the results of MATLAB analysis and PSpice simulation. This gives the reader information about the state of the art and confidence in the legitimacy of the solution, as long as the solutions obtained by using the two software tools agree with each other. For representative examples of impedance matching and filter design, the solution using MATLAB and Smith chart (Smith V4.1) are presented for comparison and crosscheck. This approach is expected to give the reader confidence in, and a deeper understanding of, the solution. In addition, this text:

  • Increases the reader's understanding of the underlying processes and related equations for the design and analysis of circuits
  • Provides a stepping stone to RF (radio frequency) circuit design by demonstrating how MATLAB can be used for the design and implementation of microstrip filters
  • Features two chapters dedicated to the application of Smith charts and two-port network theory 

Electronic Circuits with MATLAB®, PSpice®, and Smith Chart will be of great benefit to practicing engineers and graduate students interested in circuit theory and RF circuits.

Table of Contents

Preface xiii

About the Companion Website xv

1 Load Line Analysis and Fourier Series 1

1.1 Load Line Analysis 1

1.1.1 Load Line Analysis of a Nonlinear Resistor Circuit 3

1.1.2 Load Line Analysis of a Nonlinear RL circuit 7

1.2 Voltage-Current Source Transformation 10

1.3 Thevenin/Norton Equivalent Circuits 11

1.4 Miller’s Theorem 18

1.5 Fourier Series 18

1.5.1 Computation of Fourier Coefficients Using Symmetry 20

1.5.2 Circuit Analysis Using Fourier Series 29

1.5.3 RMS Value and Distortion Factor of a Non-Sinusoidal Periodic Signal 35

Problems 36

2 Diode Circuits 43

2.1 The v-i Characteristic of Diodes 43

2.1.1 Large-Signal Diode Model for Switching Operations 44

2.1.2 Small-Signal Diode Model for Amplifying Operations 44

2.2 Analysis/Simulation of Diode Circuits 46

2.2.1 Examples of Diode Circuits 46

2.2.2 Clipper/Clamper Circuits 51

2.2.3 Half-wave Rectifier 53

2.2.4 Half-wave Rectifier with Capacitor - Peak Rectifier 53

2.2.5 Full-wave Rectifier 57

2.2.6 Full-wave Rectifier with LC Filter 59

2.2.7 Precision Rectifiers 62

2.2.7.1 Improved Precision Half-wave Rectifier 63

2.2.7.2 Precision Full-wave Rectifier 65

2.2.8 Small-Signal (AC) Analysis of Diode Circuits 67

2.3 Zender Diodes 75

Problems 85

3 BJT Circuits 105

3.1 BJT (Bipolar Junction Transistor) 106

3.1.1 Ebers-Moll Representation of BJT 106

3.1.2 Operation Modes (Regions) of BJT 109

3.1.3 Parameters of BJT 109

3.1.4 Common-Base Configuration 111

3.1.5 Common-Emitter Configuration 113

3.1.6 Large-Signal (DC) Model of BJT 115

3.1.7 Small-Signal (AC) Model of BJT 142

3.1.8 Analysis of BJT Circuits 143

3.1.9 BJT Current Mirror 156

3.1.10 BJT Inverter/Switch 161

3.1.11 Emitter-Coupled Differential Pair 165

3.2 BJT Amplifier Circuits 168

3.2.1 Common-Emitter (CE) Amplifier 169

3.2.2 Common-Collector (CC) Amplifier (Emitter Follower) 173

3.2.3 Common-Base (CB) Amplifier 180

3.2.4 Multistage Cascaded BJT Amplifier 187

3.2.5 Composite/Compound Multi-Stage BJT Amplifier 199

3.3 Logic Gates Using Diodes/Transistors[C-3, M-1] 209

3.3.1 DTL NAND Gate 209

3.3.2 TTL NAND Gate 215

3.3.2.1 Basic TTL NAND Gate Using Two BJTs 215

3.3.2.2 TTL NAND Gate Using Three BJTs 218

3.3.2.3 Totem-Pole Output Stage 222

3.3.2.4 Open-Collector Output and Tristate Output 227

3.3.3 ECL (Emitter-Coupled Logic) OR/NOR Gate 229

3.4 Design of BJT Amplifier 239

3.4.1 Design of CE Amplifier with Specified Voltage Gain 232

3.4.2 Design of CC Amplifier (Emitter Follower) with Specified Input Resistance 239

3.5 BJT Amplifier Frequency Response 243

3.5.1 CE Amplifier 243

3.5.2 CC Amplifier (Emitter Follower) 248

3.5.3 CB Amplifier 255

3.6 BJT Inverter Time Response 259

Problems 266

4 FET Circuits 303

4.1 Field-Effect Transistor (FET) 303

4.1.1 JFET (Junction FET) 304

4.1.2 MOSFET (Metal-Oxide-Semiconductor FET) 313

4.1.3 MOSFET Used as a Resistor 327

4.1.4 FET Current Mirror 328

4.1.5 MOSFET Inverter 338

4.1.5.1 NMOS Inverter Using an Enhancement NMOS as a Load 342

4.1.5.2 NMOS Inverter Using a Depletion NMOS as a Load 347

4.1.5.3 CMOS Inverter 350

4.1.6 Source-Coupled Differential Pair 355

4.1.7 CMOS Logic Circuits 359

4.2 FET Amplifer 360

4.2.1 Common-Source (CS) Amplifier 362

4.2.2 CD Amplifier (Source Follower) 366

4.2.3 Common-Gate (CG) Amplifier 370

4.2.4 Common-Source (CS) Amplifier with FET Load 373

4.2.4.1 CS Amplifier with an Enhancement FET Load 373

4.2.4.2 CS Amplifier with a Depletion FET Load 376

4.2.5 Multistage FET Amplifiers 380

4.3 Design of FET Amplifier 398

4.3.1 Design of CS Amplifier 398

4.3.2 Design of CD Amplifier 405

4.4 FET Amplifier Frequency Response 409

4.4.1 CS Amplifier 410

4.4.2 CD Amplifier (Source Follower) 415

4.4.3 CG Amplifier 419

4.5 FET Inverter Time Response 423

Problems 428

5 OP Amp Circuits 467

5.1 OP Amp Basics[Y-1] 468

5.2 OP Amp Circuits with Resistors[Y-1] 471

5.2.1 OP Amp Circuits with Negative Feedback 471

5.2.1.1 Inverting OP Amp Circuit 471

5.2.1.2 Non-Inverting OP Amp Circuit 473

5.2.1.3 Voltage Follower 476

5.2.1.4 Linear Combiner 477

5.2.2 OP Amp Circuits with Positive Feedback 479

5.2.2.1 Inverting Positive Feedback OP Amp Circuit 480

5.2.2.2 Non-Inverting Positive Feedback OP Amp Circuit 481

5.3 First-Order OP Amp Circuits[Y-1] 485

5.3.1 First-Order OP Amp Circuits with Negative Feedback 485

5.3.2 First-Order OP Amp Circuits with Positive Feedback 487

5.3.2.1 Square(Rectangular)-Wave Generator 487

5.3.2.2 Rectangular/Triangular-Wave Generator 490

5.3.3 555 Timer Using OP Amp as Comparator 492

5.4 Second-Order OP Amp Circuits[Y-1] 495

5.4.1 MFB (Multi-FeedBack) Topology 495

5.4.2 Sallen-Key Topology 496

5.5 Active Filter[Y-1] 502

5.5.1 First-Order Active Filter 502

5.5.2 Second-Order Active LPF/HPF 503

5.5.3 Second-Order Active BPF 505

5.5.4 Second-Order Active BSF 507

Problems 512

6 Analog Filter 523

6.1 Analog Filter Design 523

6.2 Passive Filter 533

6.2.1 Low-pass Filter (LPF) 533

6.2.1.1 Series LR Circuit 533

6.2.1.2 Series RC Circuit 535

6.2.2 High-pass Filter (HPF) 535

6.2.2.1 Series CR Circuit 535

6.2.2.2 Series RL Circuit 536

6.2.3 Band-pass Filter (BPF) 537

6.2.3.1 Series Resistor, an Inductor, and a Capacitor (RLC) Circuit and Series Resonance 536

6.2.3.2 Parallel RLC Circuit and Parallel Resonance 539

6.2.4 Band-stop Filter (BSF) 541

6.2.4.1 Series RLC Circuit 541

6.2.4.2 Parallel RLC Circuit 544

6.2.5 Quality Factor 545

6.2.6 Insertion Loss 549

6.2.7 Frequency Scaling and Transformation 549

6.3 Passive Filter Realization 553

6.3.1 LC Ladder 553

6.3.2 L-Type Impedance Matcher 561

6.3.3 T- and П-Type Impedance Matchers 565

6.3.4 Tapped-C Impedance Matchers 571

6.4 Active Filter Realization 576

Problems 586

7 Smith Chart and Impedance Matching 601

7.1 Transmission Line 601

7.2 Smith Chart 608

7.3 Impedance Matching Using Smith Chart 616

7.3.1 Reactance Effect of a Lossless Line 616

7.3.2 Single-Stub Impedance Matching 618

7.3.2.1 Shunt-Connected Single Stub 618

7.3.2.2 Series-Connected Single Stub 622

7.3.3 Double-Stub Impedance Matching 626

7.3.4 The Quarter-Wave Transformer 631

7.3.4.1 Binomial Multisection QWT 633

7.3.4.2 Chebyshev Multisection QWT 634

7.3.5 Filter Implementation Using Stubs[P-1] 635

7.3.6 Impedance Matching with Lumped Elements 646

Problems 661

8 Two-Port Network and Parameters 677

8.1 Two-Port Parameters[Y-1] 677

8.1.1 Definitions and Examples of Two-Port Parameters 678

8.1.2 Relationships Among Two-Port Parameters 685

8.1.3 Interconnection of Two-Port Networks 689

8.1.3.1 Series Connection and z-parameters 690

8.1.3.2 Parallel (Shunt) Connection and y-parameters 690

8.1.3.3 Series-Parallel(Shunt) Connection and h-parameters 691

8.1.3.4 Parallel(Shunt)-Series Connection and g-parameters 691

8.1.3.5 Cascade Connection and a-parameters 692

8.1.4 Curse of Port Condition 692

8.1.5 Circuit Models with Given Parameters 697

8.1.5.1 Circuit Model with Given z-parameters 697

8.1.5.2 Circuit Model with Given y-parameters 699

8.1.5.3 Circuit Model with Given a/b-parameters 699

8.1.5.4 Circuit Model with Given h/g-parameters 699

8.1.6 Properties of Two-Port Networks with Source/Load 700

8.2 Scattering Parameters 709

8.2.1 Definition of Scattering Parameters 709

8.2.2 Two-Port Network with Source/Load 714

8.3 Gain and Stability 723

8.3.1 Two-Port Power Gains[L-1, P-1] 723

8.3.2 Stability[E-1, L-1, P-1] 728

8.3.3 Design for Maximum Gain[M-2, P-1] 733

8.3.4 Design for Specified Gain[M-2, P-1] 740

Problems 746

Appendix A Laplace Transform 761

Appendix B Matrix Operations with MATLAB 767

Appendix C Complex Number Operations with MATLAB 773

Appendix D Nonlinear/Differential Equations with MATLAB 775

Appendix E Symbolic Computations with MATLAB 779

Appendix F Useful Formulas 783

Appendix G Standard Values of Resistors, Capacitors, and Inductors 785

Appendix H OrCAD/PSpice® 791

Appendix I MATLAB® Introduction 831

Appendix J Diode/BJT/FET 835

Bibliography 845

Index 849

Authors

Won Y. Yang Chung-Ang University, Korea. Jaekwon Kim Brown University, USA. Kyung W. Park Korea Electronics Technology Institute, Korea. Donghyun Baek Chung-Ang University, Korea. Sungjoon Lim Chung-Ang University, Korea. Jingon Joung Chung-Ang University, Korea. Suhyun Park Chung-Ang University, Korea. Han L. Lee Chung-Ang University, Korea. Woo June Choi Chung-Ang University, Korea. Taeho Im Hoseo University, Korea.