Following a short introduction, the main part of this reference deals with industrial forms, their raw materials, properties and manifold applications. Featuring chapters on carbon and graphite materials in energy application, and as catalysts. It covers all important classes of carbon and graphite, from polygranular materials to fullerenes, and from activated carbon to carbon blacks and nanoforms of carbon.
Indispensable for chemists and engineers working in such fields as steel, aluminum, electrochemistry, nanotechnology, catalyst, carbon fibres and lightweight composites.
Table of Contents
Volume 1
Preface xxiii
1 Introduction: The Future of Carbon Materials - The Industrial Perspective 1
Hubert Jäger, Wilhelm Frohs, and Tilo Hauke
1.1 Overview 1
1.2 Traditional Carbon and Graphite Materials 2
1.3 Modern Application of Carbon Materials 12
1.4 Future Application of Carbon Materials 18
1.5 Conclusion 20
2 The Element Carbon 21
Wilhelm Frohs and Hubert Jäger
2.1 Introduction 21
2.2 Diamond 28
2.3 Graphite 28
2.4 Non-graphitic Carbon 29
2.5 Carbyne and Chaoite 29
2.6 Nanoforms of Carbon 30
References 30
Further Reading 31
3 History of Carbon Materials 33
Gerd Collin
3.1 Origin of Elemental Carbon 33
3.2 Formation and Economic Development of Natural Diamonds 34
3.3 Formation and Use of Natural Graphite 34
3.4 History of Charcoal from Wood and Coke from Coal 35
3.5 History of Carbon Black 35
3.6 History of Activated Carbon 38
3.7 Development of Synthetic Graphite 38
3.8 Development of Synthetic Diamonds 39
3.9 Development of Carbon Fibers 39
3.10 Discovery and Inventions of Nanocarbons: Fullerenes, Nanotubes, and Graphene 40
References 42
4 Recommended Terminology for the Description of Carbon as a Solid (© 1995 IUPAC) 45
E. Fitzer, K.-H. Köchling, H.P. Böhm, and H. Marsh
List of Terms 45
Description of the Terms 48
Acetylene Black 48
Description 48
Notes 48
Acheson Graphite 48
Description 48
Notes 48
Activated Carbon 49
Description 49
Notes 49
Activated Charcoal 49
Description 49
Agranular Carbon 49
Description 49
Notes 49
Amorphous Carbon 49
Description 49
Notes 50
Artificial Graphite 50
Description 50
Notes 50
Baking 50
Description 50
Binder 50
Description 50
Binder Coke 51
Description 51
Notes 51
Brooks and Taylor Structure in the Carbonaceous Mesophase 51
Description 51
Notes 51
Bulk Mesophase 51
Description 51
Notes 52
Calcined Coke 52
Description 52
Notes 52
Carbon 52
Description 52
Notes 52
Carbon Artifact 52
Description 52
Notes 52
Carbon Black 53
Description 53
Notes 53
Carbon-Carbon Composite 53
Description 53
Carbon Cenospheres 53
Description 53
Carbon Cloth 53
Description 53
Notes 54
Carbon Electrode 54
Description 54
Notes 54
Carbon Felt 54
Description 54
Notes 54
Carbon Fiber 54
Description 54
Notes 55
Carbon Fiber Fabrics 55
Description 55
Carbon Fibers Type HM 55
Description 55
Notes 55
Carbon Fibers Type HT 55
Description 55
Notes 56
Carbon Fibers Type IM 56
Description 56
Notes 56
Carbon Fibers Type LM (Low Modulus) 56
Description 56
Notes 56
Carbon Fibers Type UHM 57
Description 57
Carbon Material 57
Description 57
Notes 57
Carbon Mix 57
Description 57
Carbon Whiskers 57
Description 57
Carbonaceous Mesophase 57
Description 57
Notes 58
Carbonization 58
Description 58
Notes 58
Catalytic Graphitization 58
Description 58
Notes 58
Char 59
Description 59
Notes 59
Charcoal 59
Description 59
Notes 59
Coal-Derived Pitch Coke 59
Description 59
Notes 59
Coal-Tar Pitch 60
Description 60
Notes 60
Coalification 60
Description 60
Notes 60
Coke 60
Description 60
Notes 60
Coke Breeze 61
Description 61
Colloidal Carbon 61
Description 61
Notes 61
Delayed Coke 61
Description 61
Notes 61
Delayed Coking Process 61
Description 61
Notes 62
Diamond 62
Description 62
Notes 62
Diamond by CVD 62
Description 62
Notes 62
Diamond-Like Carbon Films 63
Description 63
Notes 63
Electrographite 63
Description 63
Exfoliated Graphite 63
Description 63
Notes 64
Fibrous Activated Carbon 64
Description 64
Notes 64
Fibrous Carbon 64
Description 64
Filamentous Carbon 64
Description 64
Notes 64
Filler 65
Description 65
Filler Coke 65
Description 65
Notes 65
Fluid Coke 65
Description 65
Notes 65
Fullerenes 66
Description 66
Notes 66
Furnace Black 66
Description 66
Notes 66
Gas-Phase-Grown Carbon Fibers 66
Description 66
Notes 66
Glass-Like Carbon 67
Description 67
Notes 67
Granular Carbon 67
Description 67
Notes 67
Graphene Layer 67
Description 67
Notes 68
Graphite 68
Description 68
Notes 68
Graphite Electrode 68
Description 68
Graphite Fibers 68
Description 68
Notes 69
Graphite Material 69
Description 69
Notes 69
Graphite Whiskers 69
Description 69
Notes 69
GRAPHITIC CARBON 70
Description 70
Notes 70
Graphitizable Carbon 70
Description 70
Notes 70
Graphitization 70
Description 70
Notes 70
Graphitization Heat Treatment 71
Description 71
Notes 71
Graphitized Carbon 71
Description 71
Notes 71
Green Coke 71
Description 71
Notes 72
Hard Amorphous Carbon Films 72
Description 72
Hexagonal Graphite 72
Description 72
Notes 72
High-Pressure Graphitization 72
Description 72
Highly Oriented Pyrolytic Graphite 73
Description 73
Notes 73
Isotropic Carbon 73
Description 73
Notes 73
Isotropic Pitch-Based Carbon Fibers 73
Description 73
Notes 73
Lamp Black 74
Description 74
Mesogenic Pitch 74
Description 74
Mesophase Pitch 74
Description 74
Notes 74
Mesophase Pitch-Based Carbon Fibers 74
Description 74
Metallurgical Coke 75
Description 75
Notes 75
Microporous Carbon 75
Description 75
Notes 75
MPP-Based Carbon Fibers 75
Description 75
Natural Graphite 75
Description 75
Notes 76
Needle Coke 76
Description 76
Notes 76
Non-graphitic Carbon 76
Description 76
Notes 76
Non-graphitizable Carbon 77
Description 77
Notes 77
Nuclear Graphite 77
Description 77
Notes 77
Pan-Based Carbon Fibers 77
Description 77
Particulate Carbon 78
Description 78
Notes 78
Petroleum Coke 78
Description 78
Notes 78
Petroleum Pitch 78
Description 78
Notes 78
Pitch 79
Description 79
Notes 79
Pitch-Based Carbon Fibers 79
Description 79
Notes 79
Polycrystalline Graphite 79
Description 79
Notes 80
Polygranular Carbon 80
Description 80
Notes 80
Polygranular Graphite 80
Description 80
Notes 80
Premium Coke 81
Description 81
Notes 81
Puffing 81
Description 81
Notes 81
Puffing Inhibitor 81
Description 81
Notes 81
Pyrolytic Carbon 82
Description 82
Notes 82
Pyrolytic Graphite 82
Description 82
Notes 82
Raw Coke 82
Description 82
Notes 83
Rayon-Based Carbon Fibers 83
Description 83
Notes 83
Regular Coke 83
Description 83
Notes 83
Rhombohedral Graphite 84
Description 84
Notes 84
Semicoke 84
Description 84
Notes 84
Soot 84
Description 84
Notes 85
Spherical Carbonaceous Mesophase 85
Description 85
Stabilization Treatment of Thermoplastic Precursor Fibers for Carbon Fibers 85
Description 85
Notes 85
Stress Graphitization 85
Description 85
Notes 86
Synthetic Graphite 86
Description 86
Notes 86
Thermal Black 86
Description 86
References 86
5 Graphite 89
Otto Vohler, Ferdinand von Sturm, Erhard Wege, and Wilhelm Frohs
5.1 Graphite Single Crystal 89
5.2 Natural Graphite 94
5.2.1 Occurrence and Properties 94
5.3 Synthetic Graphite 95
References 101
Further Reading 103
6 Industrial Carbons 105
6.1 Introduction to Polygranular Carbon and Graphite Materials 106
References 106
6.1.1 Polygranular Carbon and Graphite Materials 107
Hubert Jäger, Wilhelm Frohs, Ferdinand von Sturm, Otto Vohler, and Erhard Wege
6.1.1.1 The Relevance of Raw Materials 107
6.1.1.1.1 Petroleum Coke 109
6.1.1.1.2 Coal-Tar Pitch Coke 113
6.1.1.1.3 Anthracite 114
6.1.1.1.4 Binder Materials 115
6.1.1.1.4.1 Coal-Tar Pitch 115
6.1.1.1.4.2 Petroleum Pitch 117
6.1.1.1.4.3 Thermosetting Resins 119
References 120
Further Reading 121
6.1.2 Petroleum Coke 122
Heinrich Predel and Srini Srivatsan
6.1.2.1 Introduction 122
6.1.2.2 Physical and Chemical Properties 122
6.1.2.2.1 Physical Properties 122
6.1.2.2.2 Chemical Properties and Composition 124
6.1.2.3 Production 125
6.1.2.3.1 Production Processes 125
6.1.2.3.1.1 Delayed Coking 125
6.1.2.3.1.2 Fluid Coking 132
6.1.2.3.1.3 Flexicoking 134
6.1.2.3.2 Calcination 135
6.1.2.3.2.1 Rotary Kiln Calciner 137
6.1.2.3.2.2 Rotary Hearth Calciner 138
6.1.2.3.2.3 Shaft Kiln Calciner 138
6.1.2.4 Uses and Economic Aspects 138
6.1.2.4.1 Green Petroleum Coke 140
6.1.2.4.2 Calcined Petroleum Coke 141
6.1.2.4.2.1 Anode-Grade Coke (Regular Calcinate) 141
6.1.2.4.2.2 Needle Coke 141
6.1.2.5 Quality Aspects 142
6.1.2.5.1 Green Coke 142
6.1.2.5.2 Regular Calcinate 143
6.1.2.5.3 Needle Coke 144
6.1.2.6 Environmental and Safety Aspects 145
6.1.2.6.1 Green Coke 145
6.1.2.6.2 Calcined Petroleum Coke 146
References 147
Further Reading 149
6.1.3 Coal-Tar Pitch Coke 150
Tetsusei Fukuda
6.1.3.1 Introduction 150
6.1.3.2 Physical and Chemical Properties 151
6.1.3.2.1 Physical Properties 151
6.1.3.2.2 Chemical Properties 151
6.1.3.3 Production of Pitch Coke 152
6.1.3.3.1 Production Process 152
6.1.3.3.1.1 Chamber Coking Process 153
6.1.3.3.1.2 Delayed Coker and Calciner 155
6.1.3.4 Uses 161
6.1.3.4.1 Aggregate of Graphite Electrode for Aluminum Smelting 161
6.1.3.4.2 Aggregate for Graphite Electrode in Electric Arc Furnace Steelmaking 161
6.1.3.5 Environmental and Safety Aspects 162
References 164
6.1.4 Natural Graphite 165
Werner Handl
6.1.4.1 Occurrence and Classification 165
6.1.4.2 Mining and Cleaning 165
6.1.4.3 Applications of Natural Graphite 169
6.1.4.4 Economic Aspects 170
References 171
6.1.5 Tar and Pitch 172
Gerd-Peter Blümer, Gerd Collin, and Hartmut Höke
6.1.5.1 Origin, Classification, and Industrial Importance of Tars and Pitches 172
6.1.5.1.1 Origin and Classification 172
6.1.5.1.2 History 173
6.1.5.1.3 Industrial Importance 174
6.1.5.2 Properties 174
6.1.5.3 Processing of Coke-Oven Coal Tar 184
6.1.5.3.1 Survey 184
6.1.5.3.2 Primary Distillation 185
6.1.5.3.3 Processing of Coal-Tar Pitch 189
6.1.5.3.3.1 Cooling 189
6.1.5.3.3.2 Production of Electrode Pitch 190
6.1.5.3.3.3 Production of Special Pitches 194
6.1.5.3.4 Processing of Tar Distillates 196
6.1.5.3.4.1 Carbon Black Oils 196
6.1.5.3.4.2 Impregnating Oils 196
6.1.5.3.4.3 Fuel oils 199
6.1.5.3.4.4 Diesel Fuels 199
6.1.5.3.4.5 Fluxing Oils 199
6.1.5.4 Processing of Low-Temperature Coal Tars 199
6.1.5.5 Processing of Other Tars and Tarlike Raw Materials 201
6.1.5.5.1 Lignite Tars 201
6.1.5.5.2 Peat Tars 201
6.1.5.5.3 Wood Tars 202
6.1.5.5.4 Oil-Shale Tars 202
6.1.5.5.5 Pyrolysis Residual Oils 202
6.1.5.6 Uses of Tar Products and Their Economic Importance 203
6.1.5.7 Toxicology and Ecotoxicology 204
6.1.5.7.1 Toxicology 204
6.1.5.7.2 Ecotoxicology 206
6.1.5.7.3 Classification and Legislation 206
References 207
6.1.6 Thermosetting Resins 211
Josef Suren
References 213
6.2 Manufacturing 214
Johann Daimer
6.2.1 Grinding and Sizing 214
6.2.2 Mixing 214
6.2.3 Forming 215
6.2.3.1 Molding 216
6.2.3.2 Isostatic Molding 216
6.2.3.3 Vibration Molding 217
6.2.3.4 Other Forming Methods 217
6.2.4 Baking 217
6.2.4.1 Ring Furnace 219
6.2.4.2 Car-Bottom Furnace/Single-Chamber Furnace 221
6.2.4.3 Tunnel Kiln 221
6.2.4.4 Other Furnaces 222
6.2.5 Graphitization 222
6.2.5.1 Acheson Furnace 224
6.2.5.2 Castner Furnace 224
6.2.5.3 Induction Furnace 225
6.2.5.4 Radiation Heating 225
6.2.6 Purification 225
6.2.7 Machining 226
6.2.8 Impregnation and Surface Coating 226
References 227
6.3 Environmental, Health and Safety Aspects of the Production of Carbon and Graphite 230
Ruediger Meyer zu Reckendorf
6.3.1 Environmental Aspects 230
6.3.1.1 Raw Materials 230
6.3.1.2 Processes and Energy 231
6.3.2 Occupational Safety and Health Aspects 232
6.3.2.1 Coal Tar Pitch 232
6.3.2.2 Risk Strategy for Benzopyrene 232
6.3.2.3 Gases 233
6.3.2.4 Electric Current 234
6.3.2.5 Dust 234
6.3.3 Process Safety 234
References 235
6.4 Properties of Polygranular Carbon and Graphite Materials 237
Marcus Franz, Franz Fendt, and Karl Wimmer
6.4.1 Physical Properties 237
6.4.2 Chemical Properties 241
References 242
Further Reading 242
6.5 Applications 243
6.5.1 Prebaked Anodes for Aluminum Electrolysis 244
Jean-Claude Fischer and Raymond Cecil Perruchoud
6.5.1.1 Introduction 244
6.5.1.2 The Electrolysis Cell 244
6.5.1.3 The Role of Anodes in the Pots 245
6.5.1.3.1 Current Conductor Aspects 245
6.5.1.3.2 Thermal Aspects 248
6.5.1.3.3 Anode Failure and Consumption Mechanisms 249
6.5.1.3.4 Carbon Consumption Figures 252
6.5.1.4 The Cost of Al Production Related to the Anodes 252
6.5.1.5 The Anode Manufacture for Large Modern Smelters 253
6.5.1.6 The Raw Materials 254
6.5.1.7 The Green Mill 255
6.5.1.7.1 Dry Aggregate Preparation 255
6.5.1.7.2 Paste and Green Block Production 260
6.5.1.7.3 The Baking Furnace 264
6.5.1.7.4 Anode Slotting 268
6.5.1.7.5 Anode Rodding 269
6.5.1.7.6 Anode Quality Control 271
6.5.1.8 Outlook 271
References 273
6.5.2 Cathodes for Aluminum Electrolysis 275
Frank Hiltmann
6.5.2.1 Cathodes in the Aluminum Smelting Process 275
6.5.2.2 Cathode Classification 275
6.5.2.3 Cathode Lifetime 277
6.5.2.4 Wettable Cathodes 278
6.5.2.5 Surface-Profiled Cathodes 279
6.5.2.6 Spent Potlining 280
References 280
Further Reading 280
6.5.3 Graphite Electrodes for Electric Arc Furnaces 281
Daniel Steppich
6.5.3.1 Graphite Electrodes for Electric Arc Furnaces 281
6.5.3.1.1 Steel Production 281
6.5.3.1.1.1 The Era of Iron and Steel 282
6.5.3.1.1.2 Steel Recycling in an Electric Arc Furnace 287
6.5.3.1.1.3 Steel Market Outlook 296
6.5.3.1.2 Graphite Electrodes in the Steel Recycling Process 298
6.5.3.1.2.1 Application Requirements 299
6.5.3.1.2.2 Wear Mechanisms 303
6.5.3.1.2.3 Future Developments 308
6.5.3.1.2.4 Graphite Electrode Market Outlook 312
References 314
6.5.4 Linings and Casting 320
Otto Vohler, Ferdinand von Sturm, and Erhard Wege
References 321
Further Reading 321
6.5.5 Carbon Electrodes 322
Eckhard Escher
6.5.5.1 Introduction 322
6.5.5.1.1 Raw Materials 322
6.5.5.1.2 Manufacturing 323
6.5.5.1.3 Typical Properties 323
6.5.5.1.4 Dimensions 324
6.5.5.1.5 Joint Systems 324
6.5.5.1.6 Carbon Electrode Market 325
Reference 325
6.5.6 Self-Baking Electrodes 326
Johann-Christian Leye and Robert Becker
6.5.6.1 Raw Materials 327
6.5.6.2 Manufacturing 327
6.5.6.3 Properties 328
6.5.6.4 Operation Mode 328
6.5.6.4.1 The Process of Self-Baking Electrodes 328
References 329
6.5.7 Graphite Process Equipment 331
Marcus Franz
6.5.7.1 Heat Exchangers 332
6.5.7.2 Absorbers, Desorbers, and Distillation Columns 335
6.5.7.3 Hydrochloric Acid and Gas Synthesis Units 335
6.5.7.4 Reactors 336
6.5.7.5 Pumps 336
6.5.8 Fine-Grained Graphite 338
Werner Richard Hoffmann
6.5.8.1 Markets and Applications 338
6.5.8.2 Applications in the Electronic Industry 338
6.5.8.3 Applications in the Metallurgy 341
6.5.8.4 Applications in the Ceramics 344
6.5.8.5 Applications in the Glass and Quartz-Glass Production 345
6.5.8.6 Applications for Current Transmission 345
6.5.8.6.1 Carbon Brushes 345
6.5.8.6.2 Current Collectors 346
6.5.8.7 Applications in the Analytical Technology 347
6.5.9 Synthetic Graphite in Nuclear Applications 349
Rainer Schmitt
6.5.9.1 Early Graphites in Nuclear Reactor Technology 349
6.5.9.2 Requirements for Nuclear Graphite 350
6.5.9.3 Radiation Damage in Nuclear Graphite 351
6.5.9.3.1 Structure of Polycrystalline Graphite 351
6.5.9.3.2 Basic Effects of Radiation on the Graphite Lattice Structure 353
6.5.9.3.3 Graphite Property Changes Due to Fast Neutron Irradiation 355
6.5.9.3.3.1 Dimensional Changes 355
6.5.9.3.3.2 Thermal Expansion Coefficient (CTE) 355
6.5.9.3.3.3 Thermal Conductivity and Resistivity 358
6.5.9.3.3.4 Young’s Modulus 358
6.5.9.3.3.5 Tensile Strength 359
6.5.9.3.3.6 Irradiation-Induced Creep 359
6.5.9.4 Decommissioning 361
6.5.9.5 Outlook 362
References 363
6.5.10 Expanded Graphite and Graphite Foils 364
Martin Christ
6.5.10.1 Production 364
6.5.10.2 Properties 365
6.5.10.3 Applications 367
6.5.10.3.1 Sealing Applications 367
6.5.10.3.2 Conductive Fillers 368
6.5.10.3.3 Latent Heat Storage 369
6.5.10.3.4 Other Applications 370
6.5.10.4 Economic Aspects 370
References 370
Further Reading 371
6.5.11 Other Classes of Carbon 372
Otto Vohler, Ferdinand von Sturm, and Erhard Wege
6.5.11.1 Glass-Like Carbon 372
6.5.11.2 Pyrocarbon and Pyrographite 373
6.5.11.3 Graphite Compounds 374
6.5.11.3.1 Surface Complexes 374
6.5.11.3.2 Graphite Intercalation Compounds 375
References 376
Further Reading 377
7 Carbon and Graphite for Electrochemical Power Sources 379
Mario Wachtler, Oswin Öttinger, and Rüdiger Schweiss
7.1 Introduction 379
7.2 Primary Batteries 380
7.3 Lead Acid Batteries 381
7.4 Li-Ion Batteries 387
7.4.1 Introduction 387
7.4.2 Active Materials: General Concepts 390
7.4.2.1 Types of Carbon and Graphite Materials 391
7.4.2.2 Mechanism of Charge Storage in Graphitic Materials 392
7.4.2.3 Graphitization Degree and Reversible Capacity 395
7.4.2.4 The Solid Electrolyte Interphase 397
7.4.2.5 Solvent Co-intercalation and Graphite Exfoliation 398
7.4.2.6 Further Material Design Aspects 401
7.4.2.7 Mechanism of Charge Storage in Amorphous Carbons 403
7.4.3 Commercialized Active Materials 404
7.4.3.1 Amorphous Carbons (Hard and Soft Carbons) 406
7.4.3.2 Graphitized Mesophase Carbon Materials 409
7.4.3.3 Natural Graphite 409
7.4.3.4 Synthetic Graphite 411
7.4.3.5 Carbon/Graphite-Silicon and Composites 412
7.4.3.6 Other Anode Materials 413
7.4.4 Conductive Additives 415
7.4.5 Carbon Coatings 417
7.5 “Beyond Li-Ion” Battery Chemistries 418
7.5.1 Na-Ion Battery 418
7.5.2 Li-Sulfur Battery 419
7.5.3 Li-Oxygen/Air Battery 420
7.6 Electrochemical Double-Layer Capacitors 420
7.6.1 Introduction 420
7.6.2 Effect of Porosity on Capacitance 423
7.6.3 Carbon-Based Electrode Materials 425
7.6.3.1 Activated Carbons 426
7.6.3.2 Other Carbon Materials 427
7.7 Redox Flow Batteries 427
7.7.1 Introduction 427
7.7.2 Bipolar Plates 428
7.7.3 Electrode Materials 431
7.7.3.1 Carbon Felts 431
7.7.3.2 Reticulated Vitreous Carbon 433
7.7.3.3 Other Electrode Concepts 434
7.7.3.4 Relevance of Carbon Materials 436
7.8 Fuel Cells 438
7.8.1 Introduction 438
7.8.2 Bipolar Plates 439
7.8.2.1 Manufacturing 440
7.8.2.2 Properties 440
7.8.3 Gas Diffusion Layers and Electrodes 440
7.8.3.1 Gas Diffusion Layer Substrates 442
7.8.3.2 Microporous Layers 444
7.8.3.3 Gas Diffusion Electrodes and Catalyst Layers 446
References 448
Further Reading 455
Volume 2
Preface xv
8 Carbon and Graphite for Catalysis 457
Dang Sheng Su, Wei Qi, and Guodong Wen
9 Activated Carbon 491
Klaus-Dirk Henning and Hartmut von Kienle
10 Carbon Black 533
Conny Oswald Vogler and Manfred Voll
11 Carbon Fibers 603
Michael Heine
12 Carbon Fiber Composites 697
12.1 Carbon Fiber Reinforced Polymers 698
Klaus Drechsler, Michael Heine, and Peter Mitschang
12.2 Carbon Fiber Reinforced Carbon 740
Udo Gruber, Oswin Öttinger, Walter Baur, and Ludger Fischer
12.3 Carbon Fiber Reinforced Ceramic Composites 825
Bernhard Heidenreich and Andreas Kienzle
13 Nanocarbons 885
Kazunori Fujisawa, Yoong Ahm Kim, Takuya Hayashi, Kenji Takeuchi, Hiroyuki Muramatsu, Shuji Tsuruoka, Takashi Yanagisawa, Mauricio Terrones, and Morinobu Endo
Index 945