+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Industrial Carbon and Graphite Materials. Raw Materials, Production and Applications. Edition No. 1

  • Book

  • 1008 Pages
  • April 2021
  • John Wiley and Sons Ltd
  • ID: 5840248
An excellent overview of industrial carbon and graphite materials, especially their manufacture, use and applications in industry.
Following a short introduction, the main part of this reference deals with industrial forms, their raw materials, properties and manifold applications. Featuring chapters on carbon and graphite materials in energy application, and as catalysts. It covers all important classes of carbon and graphite, from polygranular materials to fullerenes, and from activated carbon to carbon blacks and nanoforms of carbon.
Indispensable for chemists and engineers working in such fields as steel, aluminum, electrochemistry, nanotechnology, catalyst, carbon fibres and lightweight composites.

Table of Contents

Volume 1

Preface xxiii

1 Introduction: The Future of Carbon Materials - The Industrial Perspective 1
Hubert Jäger, Wilhelm Frohs, and Tilo Hauke

1.1 Overview 1

1.2 Traditional Carbon and Graphite Materials 2

1.3 Modern Application of Carbon Materials 12

1.4 Future Application of Carbon Materials 18

1.5 Conclusion 20

2 The Element Carbon 21
Wilhelm Frohs and Hubert Jäger

2.1 Introduction 21

2.2 Diamond 28

2.3 Graphite 28

2.4 Non-graphitic Carbon 29

2.5 Carbyne and Chaoite 29

2.6 Nanoforms of Carbon 30

References 30

Further Reading 31

3 History of Carbon Materials 33
Gerd Collin

3.1 Origin of Elemental Carbon 33

3.2 Formation and Economic Development of Natural Diamonds 34

3.3 Formation and Use of Natural Graphite 34

3.4 History of Charcoal from Wood and Coke from Coal 35

3.5 History of Carbon Black 35

3.6 History of Activated Carbon 38

3.7 Development of Synthetic Graphite 38

3.8 Development of Synthetic Diamonds 39

3.9 Development of Carbon Fibers 39

3.10 Discovery and Inventions of Nanocarbons: Fullerenes, Nanotubes, and Graphene 40

References 42

4 Recommended Terminology for the Description of Carbon as a Solid (© 1995 IUPAC) 45
E. Fitzer, K.-H. Köchling, H.P. Böhm, and H. Marsh

List of Terms 45

Description of the Terms 48

Acetylene Black 48

Description 48

Notes 48

Acheson Graphite 48

Description 48

Notes 48

Activated Carbon 49

Description 49

Notes 49

Activated Charcoal 49

Description 49

Agranular Carbon 49

Description 49

Notes 49

Amorphous Carbon 49

Description 49

Notes 50

Artificial Graphite 50

Description 50

Notes 50

Baking 50

Description 50

Binder 50

Description 50

Binder Coke 51

Description 51

Notes 51

Brooks and Taylor Structure in the Carbonaceous Mesophase 51

Description 51

Notes 51

Bulk Mesophase 51

Description 51

Notes 52

Calcined Coke 52

Description 52

Notes 52

Carbon 52

Description 52

Notes 52

Carbon Artifact 52

Description 52

Notes 52

Carbon Black 53

Description 53

Notes 53

Carbon-Carbon Composite 53

Description 53

Carbon Cenospheres 53

Description 53

Carbon Cloth 53

Description 53

Notes 54

Carbon Electrode 54

Description 54

Notes 54

Carbon Felt 54

Description 54

Notes 54

Carbon Fiber 54

Description 54

Notes 55

Carbon Fiber Fabrics 55

Description 55

Carbon Fibers Type HM 55

Description 55

Notes 55

Carbon Fibers Type HT 55

Description 55

Notes 56

Carbon Fibers Type IM 56

Description 56

Notes 56

Carbon Fibers Type LM (Low Modulus) 56

Description 56

Notes 56

Carbon Fibers Type UHM 57

Description 57

Carbon Material 57

Description 57

Notes 57

Carbon Mix 57

Description 57

Carbon Whiskers 57

Description 57

Carbonaceous Mesophase 57

Description 57

Notes 58

Carbonization 58

Description 58

Notes 58

Catalytic Graphitization 58

Description 58

Notes 58

Char 59

Description 59

Notes 59

Charcoal 59

Description 59

Notes 59

Coal-Derived Pitch Coke 59

Description 59

Notes 59

Coal-Tar Pitch 60

Description 60

Notes 60

Coalification 60

Description 60

Notes 60

Coke 60

Description 60

Notes 60

Coke Breeze 61

Description 61

Colloidal Carbon 61

Description 61

Notes 61

Delayed Coke 61

Description 61

Notes 61

Delayed Coking Process 61

Description 61

Notes 62

Diamond 62

Description 62

Notes 62

Diamond by CVD 62

Description 62

Notes 62

Diamond-Like Carbon Films 63

Description 63

Notes 63

Electrographite 63

Description 63

Exfoliated Graphite 63

Description 63

Notes 64

Fibrous Activated Carbon 64

Description 64

Notes 64

Fibrous Carbon 64

Description 64

Filamentous Carbon 64

Description 64

Notes 64

Filler 65

Description 65

Filler Coke 65

Description 65

Notes 65

Fluid Coke 65

Description 65

Notes 65

Fullerenes 66

Description 66

Notes 66

Furnace Black 66

Description 66

Notes 66

Gas-Phase-Grown Carbon Fibers 66

Description 66

Notes 66

Glass-Like Carbon 67

Description 67

Notes 67

Granular Carbon 67

Description 67

Notes 67

Graphene Layer 67

Description 67

Notes 68

Graphite 68

Description 68

Notes 68

Graphite Electrode 68

Description 68

Graphite Fibers 68

Description 68

Notes 69

Graphite Material 69

Description 69

Notes 69

Graphite Whiskers 69

Description 69

Notes 69

GRAPHITIC CARBON 70

Description 70

Notes 70

Graphitizable Carbon 70

Description 70

Notes 70

Graphitization 70

Description 70

Notes 70

Graphitization Heat Treatment 71

Description 71

Notes 71

Graphitized Carbon 71

Description 71

Notes 71

Green Coke 71

Description 71

Notes 72

Hard Amorphous Carbon Films 72

Description 72

Hexagonal Graphite 72

Description 72

Notes 72

High-Pressure Graphitization 72

Description 72

Highly Oriented Pyrolytic Graphite 73

Description 73

Notes 73

Isotropic Carbon 73

Description 73

Notes 73

Isotropic Pitch-Based Carbon Fibers 73

Description 73

Notes 73

Lamp Black 74

Description 74

Mesogenic Pitch 74

Description 74

Mesophase Pitch 74

Description 74

Notes 74

Mesophase Pitch-Based Carbon Fibers 74

Description 74

Metallurgical Coke 75

Description 75

Notes 75

Microporous Carbon 75

Description 75

Notes 75

MPP-Based Carbon Fibers 75

Description 75

Natural Graphite 75

Description 75

Notes 76

Needle Coke 76

Description 76

Notes 76

Non-graphitic Carbon 76

Description 76

Notes 76

Non-graphitizable Carbon 77

Description 77

Notes 77

Nuclear Graphite 77

Description 77

Notes 77

Pan-Based Carbon Fibers 77

Description 77

Particulate Carbon 78

Description 78

Notes 78

Petroleum Coke 78

Description 78

Notes 78

Petroleum Pitch 78

Description 78

Notes 78

Pitch 79

Description 79

Notes 79

Pitch-Based Carbon Fibers 79

Description 79

Notes 79

Polycrystalline Graphite 79

Description 79

Notes 80

Polygranular Carbon 80

Description 80

Notes 80

Polygranular Graphite 80

Description 80

Notes 80

Premium Coke 81

Description 81

Notes 81

Puffing 81

Description 81

Notes 81

Puffing Inhibitor 81

Description 81

Notes 81

Pyrolytic Carbon 82

Description 82

Notes 82

Pyrolytic Graphite 82

Description 82

Notes 82

Raw Coke 82

Description 82

Notes 83

Rayon-Based Carbon Fibers 83

Description 83

Notes 83

Regular Coke 83

Description 83

Notes 83

Rhombohedral Graphite 84

Description 84

Notes 84

Semicoke 84

Description 84

Notes 84

Soot 84

Description 84

Notes 85

Spherical Carbonaceous Mesophase 85

Description 85

Stabilization Treatment of Thermoplastic Precursor Fibers for Carbon Fibers 85

Description 85

Notes 85

Stress Graphitization 85

Description 85

Notes 86

Synthetic Graphite 86

Description 86

Notes 86

Thermal Black 86

Description 86

References 86

5 Graphite 89
Otto Vohler, Ferdinand von Sturm, Erhard Wege, and Wilhelm Frohs

5.1 Graphite Single Crystal 89

5.2 Natural Graphite 94

5.2.1 Occurrence and Properties 94

5.3 Synthetic Graphite 95

References 101

Further Reading 103

6 Industrial Carbons 105

6.1 Introduction to Polygranular Carbon and Graphite Materials 106

References 106

6.1.1 Polygranular Carbon and Graphite Materials 107
Hubert Jäger, Wilhelm Frohs, Ferdinand von Sturm, Otto Vohler, and Erhard Wege

6.1.1.1 The Relevance of Raw Materials 107

6.1.1.1.1 Petroleum Coke 109

6.1.1.1.2 Coal-Tar Pitch Coke 113

6.1.1.1.3 Anthracite 114

6.1.1.1.4 Binder Materials 115

6.1.1.1.4.1 Coal-Tar Pitch 115

6.1.1.1.4.2 Petroleum Pitch 117

6.1.1.1.4.3 Thermosetting Resins 119

References 120

Further Reading 121

6.1.2 Petroleum Coke 122
Heinrich Predel and Srini Srivatsan

6.1.2.1 Introduction 122

6.1.2.2 Physical and Chemical Properties 122

6.1.2.2.1 Physical Properties 122

6.1.2.2.2 Chemical Properties and Composition 124

6.1.2.3 Production 125

6.1.2.3.1 Production Processes 125

6.1.2.3.1.1 Delayed Coking 125

6.1.2.3.1.2 Fluid Coking 132

6.1.2.3.1.3 Flexicoking 134

6.1.2.3.2 Calcination 135

6.1.2.3.2.1 Rotary Kiln Calciner 137

6.1.2.3.2.2 Rotary Hearth Calciner 138

6.1.2.3.2.3 Shaft Kiln Calciner 138

6.1.2.4 Uses and Economic Aspects 138

6.1.2.4.1 Green Petroleum Coke 140

6.1.2.4.2 Calcined Petroleum Coke 141

6.1.2.4.2.1 Anode-Grade Coke (Regular Calcinate) 141

6.1.2.4.2.2 Needle Coke 141

6.1.2.5 Quality Aspects 142

6.1.2.5.1 Green Coke 142

6.1.2.5.2 Regular Calcinate 143

6.1.2.5.3 Needle Coke 144

6.1.2.6 Environmental and Safety Aspects 145

6.1.2.6.1 Green Coke 145

6.1.2.6.2 Calcined Petroleum Coke 146

References 147

Further Reading 149

6.1.3 Coal-Tar Pitch Coke 150
Tetsusei Fukuda

6.1.3.1 Introduction 150

6.1.3.2 Physical and Chemical Properties 151

6.1.3.2.1 Physical Properties 151

6.1.3.2.2 Chemical Properties 151

6.1.3.3 Production of Pitch Coke 152

6.1.3.3.1 Production Process 152

6.1.3.3.1.1 Chamber Coking Process 153

6.1.3.3.1.2 Delayed Coker and Calciner 155

6.1.3.4 Uses 161

6.1.3.4.1 Aggregate of Graphite Electrode for Aluminum Smelting 161

6.1.3.4.2 Aggregate for Graphite Electrode in Electric Arc Furnace Steelmaking 161

6.1.3.5 Environmental and Safety Aspects 162

References 164

6.1.4 Natural Graphite 165
Werner Handl

6.1.4.1 Occurrence and Classification 165

6.1.4.2 Mining and Cleaning 165

6.1.4.3 Applications of Natural Graphite 169

6.1.4.4 Economic Aspects 170

References 171

6.1.5 Tar and Pitch 172
Gerd-Peter Blümer, Gerd Collin, and Hartmut Höke

6.1.5.1 Origin, Classification, and Industrial Importance of Tars and Pitches 172

6.1.5.1.1 Origin and Classification 172

6.1.5.1.2 History 173

6.1.5.1.3 Industrial Importance 174

6.1.5.2 Properties 174

6.1.5.3 Processing of Coke-Oven Coal Tar 184

6.1.5.3.1 Survey 184

6.1.5.3.2 Primary Distillation 185

6.1.5.3.3 Processing of Coal-Tar Pitch 189

6.1.5.3.3.1 Cooling 189

6.1.5.3.3.2 Production of Electrode Pitch 190

6.1.5.3.3.3 Production of Special Pitches 194

6.1.5.3.4 Processing of Tar Distillates 196

6.1.5.3.4.1 Carbon Black Oils 196

6.1.5.3.4.2 Impregnating Oils 196

6.1.5.3.4.3 Fuel oils 199

6.1.5.3.4.4 Diesel Fuels 199

6.1.5.3.4.5 Fluxing Oils 199

6.1.5.4 Processing of Low-Temperature Coal Tars 199

6.1.5.5 Processing of Other Tars and Tarlike Raw Materials 201

6.1.5.5.1 Lignite Tars 201

6.1.5.5.2 Peat Tars 201

6.1.5.5.3 Wood Tars 202

6.1.5.5.4 Oil-Shale Tars 202

6.1.5.5.5 Pyrolysis Residual Oils 202

6.1.5.6 Uses of Tar Products and Their Economic Importance 203

6.1.5.7 Toxicology and Ecotoxicology 204

6.1.5.7.1 Toxicology 204

6.1.5.7.2 Ecotoxicology 206

6.1.5.7.3 Classification and Legislation 206

References 207

6.1.6 Thermosetting Resins 211
Josef Suren

References 213

6.2 Manufacturing 214
Johann Daimer

6.2.1 Grinding and Sizing 214

6.2.2 Mixing 214

6.2.3 Forming 215

6.2.3.1 Molding 216

6.2.3.2 Isostatic Molding 216

6.2.3.3 Vibration Molding 217

6.2.3.4 Other Forming Methods 217

6.2.4 Baking 217

6.2.4.1 Ring Furnace 219

6.2.4.2 Car-Bottom Furnace/Single-Chamber Furnace 221

6.2.4.3 Tunnel Kiln 221

6.2.4.4 Other Furnaces 222

6.2.5 Graphitization 222

6.2.5.1 Acheson Furnace 224

6.2.5.2 Castner Furnace 224

6.2.5.3 Induction Furnace 225

6.2.5.4 Radiation Heating 225

6.2.6 Purification 225

6.2.7 Machining 226

6.2.8 Impregnation and Surface Coating 226

References 227

6.3 Environmental, Health and Safety Aspects of the Production of Carbon and Graphite 230
Ruediger Meyer zu Reckendorf

6.3.1 Environmental Aspects 230

6.3.1.1 Raw Materials 230

6.3.1.2 Processes and Energy 231

6.3.2 Occupational Safety and Health Aspects 232

6.3.2.1 Coal Tar Pitch 232

6.3.2.2 Risk Strategy for Benzopyrene 232

6.3.2.3 Gases 233

6.3.2.4 Electric Current 234

6.3.2.5 Dust 234

6.3.3 Process Safety 234

References 235

6.4 Properties of Polygranular Carbon and Graphite Materials 237
Marcus Franz, Franz Fendt, and Karl Wimmer

6.4.1 Physical Properties 237

6.4.2 Chemical Properties 241

References 242

Further Reading 242

6.5 Applications 243

6.5.1 Prebaked Anodes for Aluminum Electrolysis 244
Jean-Claude Fischer and Raymond Cecil Perruchoud

6.5.1.1 Introduction 244

6.5.1.2 The Electrolysis Cell 244

6.5.1.3 The Role of Anodes in the Pots 245

6.5.1.3.1 Current Conductor Aspects 245

6.5.1.3.2 Thermal Aspects 248

6.5.1.3.3 Anode Failure and Consumption Mechanisms 249

6.5.1.3.4 Carbon Consumption Figures 252

6.5.1.4 The Cost of Al Production Related to the Anodes 252

6.5.1.5 The Anode Manufacture for Large Modern Smelters 253

6.5.1.6 The Raw Materials 254

6.5.1.7 The Green Mill 255

6.5.1.7.1 Dry Aggregate Preparation 255

6.5.1.7.2 Paste and Green Block Production 260

6.5.1.7.3 The Baking Furnace 264

6.5.1.7.4 Anode Slotting 268

6.5.1.7.5 Anode Rodding 269

6.5.1.7.6 Anode Quality Control 271

6.5.1.8 Outlook 271

References 273

6.5.2 Cathodes for Aluminum Electrolysis 275

Frank Hiltmann

6.5.2.1 Cathodes in the Aluminum Smelting Process 275

6.5.2.2 Cathode Classification 275

6.5.2.3 Cathode Lifetime 277

6.5.2.4 Wettable Cathodes 278

6.5.2.5 Surface-Profiled Cathodes 279

6.5.2.6 Spent Potlining 280

References 280

Further Reading 280

6.5.3 Graphite Electrodes for Electric Arc Furnaces 281
Daniel Steppich

6.5.3.1 Graphite Electrodes for Electric Arc Furnaces 281

6.5.3.1.1 Steel Production 281

6.5.3.1.1.1 The Era of Iron and Steel 282

6.5.3.1.1.2 Steel Recycling in an Electric Arc Furnace 287

6.5.3.1.1.3 Steel Market Outlook 296

6.5.3.1.2 Graphite Electrodes in the Steel Recycling Process 298

6.5.3.1.2.1 Application Requirements 299

6.5.3.1.2.2 Wear Mechanisms 303

6.5.3.1.2.3 Future Developments 308

6.5.3.1.2.4 Graphite Electrode Market Outlook 312

References 314

6.5.4 Linings and Casting 320
Otto Vohler, Ferdinand von Sturm, and Erhard Wege

References 321

Further Reading 321

6.5.5 Carbon Electrodes 322
Eckhard Escher

6.5.5.1 Introduction 322

6.5.5.1.1 Raw Materials 322

6.5.5.1.2 Manufacturing 323

6.5.5.1.3 Typical Properties 323

6.5.5.1.4 Dimensions 324

6.5.5.1.5 Joint Systems 324

6.5.5.1.6 Carbon Electrode Market 325

Reference 325

6.5.6 Self-Baking Electrodes 326
Johann-Christian Leye and Robert Becker

6.5.6.1 Raw Materials 327

6.5.6.2 Manufacturing 327

6.5.6.3 Properties 328

6.5.6.4 Operation Mode 328

6.5.6.4.1 The Process of Self-Baking Electrodes 328

References 329

6.5.7 Graphite Process Equipment 331
Marcus Franz

6.5.7.1 Heat Exchangers 332

6.5.7.2 Absorbers, Desorbers, and Distillation Columns 335

6.5.7.3 Hydrochloric Acid and Gas Synthesis Units 335

6.5.7.4 Reactors 336

6.5.7.5 Pumps 336

6.5.8 Fine-Grained Graphite 338
Werner Richard Hoffmann

6.5.8.1 Markets and Applications 338

6.5.8.2 Applications in the Electronic Industry 338

6.5.8.3 Applications in the Metallurgy 341

6.5.8.4 Applications in the Ceramics 344

6.5.8.5 Applications in the Glass and Quartz-Glass Production 345

6.5.8.6 Applications for Current Transmission 345

6.5.8.6.1 Carbon Brushes 345

6.5.8.6.2 Current Collectors 346

6.5.8.7 Applications in the Analytical Technology 347

6.5.9 Synthetic Graphite in Nuclear Applications 349
Rainer Schmitt

6.5.9.1 Early Graphites in Nuclear Reactor Technology 349

6.5.9.2 Requirements for Nuclear Graphite 350

6.5.9.3 Radiation Damage in Nuclear Graphite 351

6.5.9.3.1 Structure of Polycrystalline Graphite 351

6.5.9.3.2 Basic Effects of Radiation on the Graphite Lattice Structure 353

6.5.9.3.3 Graphite Property Changes Due to Fast Neutron Irradiation 355

6.5.9.3.3.1 Dimensional Changes 355

6.5.9.3.3.2 Thermal Expansion Coefficient (CTE) 355

6.5.9.3.3.3 Thermal Conductivity and Resistivity 358

6.5.9.3.3.4 Young’s Modulus 358

6.5.9.3.3.5 Tensile Strength 359

6.5.9.3.3.6 Irradiation-Induced Creep 359

6.5.9.4 Decommissioning 361

6.5.9.5 Outlook 362

References 363

6.5.10 Expanded Graphite and Graphite Foils 364
Martin Christ

6.5.10.1 Production 364

6.5.10.2 Properties 365

6.5.10.3 Applications 367

6.5.10.3.1 Sealing Applications 367

6.5.10.3.2 Conductive Fillers 368

6.5.10.3.3 Latent Heat Storage 369

6.5.10.3.4 Other Applications 370

6.5.10.4 Economic Aspects 370

References 370

Further Reading 371

6.5.11 Other Classes of Carbon 372
Otto Vohler, Ferdinand von Sturm, and Erhard Wege

6.5.11.1 Glass-Like Carbon 372

6.5.11.2 Pyrocarbon and Pyrographite 373

6.5.11.3 Graphite Compounds 374

6.5.11.3.1 Surface Complexes 374

6.5.11.3.2 Graphite Intercalation Compounds 375

References 376

Further Reading 377

7 Carbon and Graphite for Electrochemical Power Sources 379
Mario Wachtler, Oswin Öttinger, and Rüdiger Schweiss

7.1 Introduction 379

7.2 Primary Batteries 380

7.3 Lead Acid Batteries 381

7.4 Li-Ion Batteries 387

7.4.1 Introduction 387

7.4.2 Active Materials: General Concepts 390

7.4.2.1 Types of Carbon and Graphite Materials 391

7.4.2.2 Mechanism of Charge Storage in Graphitic Materials 392

7.4.2.3 Graphitization Degree and Reversible Capacity 395

7.4.2.4 The Solid Electrolyte Interphase 397

7.4.2.5 Solvent Co-intercalation and Graphite Exfoliation 398

7.4.2.6 Further Material Design Aspects 401

7.4.2.7 Mechanism of Charge Storage in Amorphous Carbons 403

7.4.3 Commercialized Active Materials 404

7.4.3.1 Amorphous Carbons (Hard and Soft Carbons) 406

7.4.3.2 Graphitized Mesophase Carbon Materials 409

7.4.3.3 Natural Graphite 409

7.4.3.4 Synthetic Graphite 411

7.4.3.5 Carbon/Graphite-Silicon and Composites 412

7.4.3.6 Other Anode Materials 413

7.4.4 Conductive Additives 415

7.4.5 Carbon Coatings 417

7.5 “Beyond Li-Ion” Battery Chemistries 418

7.5.1 Na-Ion Battery 418

7.5.2 Li-Sulfur Battery 419

7.5.3 Li-Oxygen/Air Battery 420

7.6 Electrochemical Double-Layer Capacitors 420

7.6.1 Introduction 420

7.6.2 Effect of Porosity on Capacitance 423

7.6.3 Carbon-Based Electrode Materials 425

7.6.3.1 Activated Carbons 426

7.6.3.2 Other Carbon Materials 427

7.7 Redox Flow Batteries 427

7.7.1 Introduction 427

7.7.2 Bipolar Plates 428

7.7.3 Electrode Materials 431

7.7.3.1 Carbon Felts 431

7.7.3.2 Reticulated Vitreous Carbon 433

7.7.3.3 Other Electrode Concepts 434

7.7.3.4 Relevance of Carbon Materials 436

7.8 Fuel Cells 438

7.8.1 Introduction 438

7.8.2 Bipolar Plates 439

7.8.2.1 Manufacturing 440

7.8.2.2 Properties 440

7.8.3 Gas Diffusion Layers and Electrodes 440

7.8.3.1 Gas Diffusion Layer Substrates 442

7.8.3.2 Microporous Layers 444

7.8.3.3 Gas Diffusion Electrodes and Catalyst Layers 446

References 448

Further Reading 455

Volume 2

Preface xv

8 Carbon and Graphite for Catalysis 457
Dang Sheng Su, Wei Qi, and Guodong Wen

9 Activated Carbon 491
Klaus-Dirk Henning and Hartmut von Kienle

10 Carbon Black 533
Conny Oswald Vogler and Manfred Voll

11 Carbon Fibers 603
Michael Heine

12 Carbon Fiber Composites 697

12.1 Carbon Fiber Reinforced Polymers 698
Klaus Drechsler, Michael Heine, and Peter Mitschang

12.2 Carbon Fiber Reinforced Carbon 740
Udo Gruber, Oswin Öttinger, Walter Baur, and Ludger Fischer

12.3 Carbon Fiber Reinforced Ceramic Composites 825
Bernhard Heidenreich and Andreas Kienzle

13 Nanocarbons 885
Kazunori Fujisawa, Yoong Ahm Kim, Takuya Hayashi, Kenji Takeuchi, Hiroyuki Muramatsu, Shuji Tsuruoka, Takashi Yanagisawa, Mauricio Terrones, and Morinobu Endo

Index 945

Authors

Hubert Jäger Wilhelm Frohs