+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Microbial Bioreactors for Industrial Molecules. Edition No. 1

  • Book

  • 512 Pages
  • July 2023
  • John Wiley and Sons Ltd
  • ID: 5840436
Microbial Bioreactors for Industrial Molecules

Harness the planet’s most numerous resources with this comprehensive guide

Microorganisms constitute the invisible majority of all living creatures on Earth. They are found virtually everywhere on the planet, including in environments too extreme for any larger organisms to exist. They form a hugely significant resource whose potential value for human society cannot be overlooked. The creation of microorganism- based bioreactors for the industrial production of valuable biomolecules has the potential to revolutionize a range of industries and fields.

Microbial Bioreactors for Industrial Molecules provides a comprehensive introduction to these bioresources. It covers all potential approaches to the use of microbial technology and the production of high-value biomolecules for the pharmaceutical, cosmetic, and agricultural industries, among others. The book’s rigorous detail and global, holistic approach to harnessing the power of the planetary microbiome make it an invaluable introduction to this growing area of research and production.

Readers will also find: - Detailed coverage of basic, applied, biosynthetic, and translational approaches to the use of microbial technology - Discussion of industrially produced microbe-borne enzymes including invertase, lipase, keratinase, protease, and more - Approaches for using microbial bioreactors to generate biofuels

Microbial Bioreactors for Industrial Molecules is essential for scientists and researchers in microbiology and biotechnology, as well as for professionals in the biotech industries and graduate students studying the applications of the life sciences.

Table of Contents

List of Contributors xv

Preface xxii

1 Microbial Bioreactors: An Introduction 1
Ashish Kumar Singh, Santosh Kumar Upadhyay, and Sudhir P. Singh

1.1 Microbial Bioresources 1

1.2 Microbial Bioresources for the Production of Enzymes 2

1.3 Microbial Bioresources for Therapeutic Application 3

1.4 Microbial Bioresources for Biogenesis 4

1.5 Microbial Fermentation 5

1.6 Microbial Biodegradation 6

1.7 Microbioresources for High- Value Metabolites 7

Acknowledgments 8

References 9

2 Microbial Bioresource for the Production of Marine Enzymes 17
Lorena Pedraza- Segura, Karina Maldonado- Ruiz Esparza, and Ruth Pedroza- Islas

2.1 Introduction 17

2.2 Prokaryotes 17

2.2.1 Amylases 19

2.2.2 Proteases 19

2.2.3 Bactericide 19

2.2.4 l- Asparaginase 19

2.2.5 Carbohydrases 20

2.3 Marine Archaea 20

2.4 Eukaryotes 23

2.4.1 Yeasts 23

2.4.2 Enzymes from Marine- Derived Fungi 24

References 30

3 Lactic Acid Production Using Microbial Bioreactors 39
Juliana Botelho Moreira, Ana Luiza Machado Terra, Whyara Karoline Almeida da Costa, Marciane Magnani, Michele Greque de Morais, and Jorge Alberto Vieira Costa

3.1 Introduction 39

3.2 Microbial Lactic Acid Producers 40

3.2.1 Bacteria 40

3.2.2 Fungi and Yeast 41

3.2.3 Microalgae 41

3.3 Alternative Substrates for Lactic Acid Production 42

3.4 Fermentation Process Parameters 42

3.5 Mode Improvement of Lactic Acid and Reactor Configuration 43

3.6 Challenges 47

3.7 Conclusions 49

Acknowledgments 50

References 50

4 Advancement in the Research and Development of Synbiotic Products 55
Anna María Polanía, Alexis García, and Liliana Londoño

4.1 Introduction 55

4.2 Probiotics, Prebiotics, and Synbiotics 56

4.2.1 Probiotics 56

4.2.2 Requirements and Selection Criteria for Probiotic Strains 57

4.3 Prebiotics 57

4.3.1 Requirements and Selection Criteria for Prebiotic Strains 59

4.4 Synbiotics 60

4.4.1 Synbiotic Selection Criteria 61

4.4.2 Mechanism of Action of Synbiotics 61

4.5 Health Benefits from Synbiotics 63

4.6 Bioreactor Design for Synbiotic Production 65

4.7 Microencapsulation and Nanotechnology to Ensure Their Viability 67

4.8 Nanoparticles 68

4.9 Applications in Various Fields such as Dermatological Diseases, Animal Feed, and Functional Foods 68

4.9.1 Dermatological Diseases 68

4.9.2 Functional Foods 70

4.9.3 Animal Feed 71

4.10 Conclusions 72

References 73

5 Microbial Asparaginase and Its Bioprocessing Significance 81
Susana Calderón- Toledo, Amparo Iris Zavaleta, and Adalberto Pessoa- Junior

5.1 Introduction 81

5.2 Classification of l- Asparaginase 82

5.3 Bioprocessing 82

5.3.1 Sources of microbial l- Asparaginase 82

5.3.2 Upstream Bioprocessing 83

5.3.3 Downstream Bioprocessing 87

5.3.3.1 Protein Concentration 87

5.3.3.2 l- Asparaginase Release 88

5.3.3.3 Chromatography 88

5.4 Scaled Up to Bioreactor 89

5.5 Characterization of l- Asparaginase 90

5.6 Applications of l- Asparaginase 92

5.6.1 Pharmaceutical Industry 92

5.6.2 Food Industry 92

5.7 Conclusions 93

References 93

6 Bioreactor- Scale Strategy for Pectinase Production 103
Javier Ulises Hernández- Beltrán, Carlos Alberto Acosta- Saldívar, Genesis Escobedo- Morales, Nagamani Balagurusamy, and Miriam Paulina Luévanos- Escareño

6.1 Introduction 103

6.2 Pectinase Classification and Origin Sources 104

6.2.1 Pectinases 104

6.2.2 Origin Source of Production of Microbial Pectinase 106

6.3 Substrates Used for Pectinase Production 107

6.4 Fermentation Strategies 107

6.4.1 Solid- State Fermentation 107

6.4.2 Submerged Fermentation 113

6.5 Bioreactor- Scale Strategies 116

6.6 Conclusions 121

References 124

7 Microbes as a Bio- Factory for Polyhydroxyalkanoate Biopolymer Production 131
Daniel Tobías- Soria, Julio Montañez, Iván Salmerón, Alejandro Mendez- Zavala, James Winterburn, and Lourdes Morales- Oyervides

7.1 Introduction 131

7.2 Microbial Polyhydroxyalkanoates as a Novel Alternative to Substitute Petroleum- Derived Plastics 132

7.3 Microbial PHAs Classification, Synthesis, and Producing Microorganisms 133

7.3.1 PHAs Classification 133

7.3.2 Biosynthetic Pathways for PHAs Production 134

7.3.3 PHAs Producing Strains 137

7.3.4 Bacteria as the Main Species for the PHA Production 139

7.3.5 Algae as a Feasible Alternative for PHA Production 140

7.4 Trends and Challenges in the PHAs Synthesis Process 141

7.4.1 Upstream Processing Trends and Challenges 142

7.4.2 Downstream Processing, Trends and Challenges 144

7.5 Process Economics and Perspectives Toward Industrial Implementation 145

7.6 Concluding Remarks 151

References 151

8 Microbial Production of Critical Enzymes of Lignolytic Functions 161
M. Indira, S. Krupanidhi, K. Vidya Prabhakar, T. C. Venkateswarulu, and K. Abraham Peele

8.1 Introduction 161

8.2 Sources of Lignolytic Enzymes 162

8.2.1 Plants 164

8.2.2 Insects 164

8.2.3 Bacteria 165

8.2.4 Fungi 165

8.2.5 Actinomycetes 166

8.2.6 Extremophiles 166

8.3 Lignolytic Enzymes 167

8.3.1 Lignin Peroxidase (EC 1.11.1.14) 167

8.3.2 Manganese Peroxidase (EC 1.11.1.13) 168

8.3.3 Versatile Peroxidase (EC 1.11.1.16) 168

8.3.4 Dye Decolorizing Peroxidases (DyPs) (EC 1.11.1.19) 169

8.3.5 Laccases (EC 1.10.3.2) 169

8.3.6 Feruloyl Esterase (EC.3.1.1.73) 170

8.3.7 Aryl Alcohol Oxidase (EC 1.1.3.7) 170

8.3.8 Pyranose- 2- Oxidase (EC 1.1.3.10) 171

8.3.9 Vanillyl Alcohol Oxidase (EC 1.1.3.38) 171

8.3.10 Quinone Reductase (EC 1.6.5.5) 171

8.4 Microbial Production of Lignolytic Enzymes 171

8.5 Mechanism of Action of Lignolytic Enzymes 175

8.6 Conclusions 177

Acknowledgments 177

References 178

9 Microbial Bioreactors for Biofuels 189
Paulo Renato Souza de Oliveira, Allana Katiussya Silva Pereira, Iara Nobre Carmona, and Ananias Francisco Dias Júnior

9.1 Introduction 189

9.2 General Classification of Bioreactor 190

9.3 Liquid- Phase Bioreactor 190

9.3.1 Cell- Free 190

9.3.1.1 Mechanically Stirred 190

9.3.1.2 Pneumatically Stirred 190

9.3.2 Immobilized Cell 191

9.4 Reactors for Solid- State Cultures 192

9.5 Bioreactor Operation Mode 193

9.6 Biofuels 194

9.6.1 Bioethanol 194

9.6.2 Biodiesel 196

9.6.3 Butanol 197

9.6.4 Biogas and Methane 198

9.6.5 Hydrogen 199

9.6.6 Biohythane 200

9.7 Considerations and Future Perspectives 201

References 201

10 Potential Microbial Bioresources for Functional Sugar Molecules 211
Satya Narayan Patel, Sweety Sharma, Ashish Kumar Singh, and Sudhir P. Singh

10.1 Introduction 211

10.2 D- Allulose 212

10.3 D- Tagatose 215

10.4 Trehalose 217

10.5 Turanose 218

10.6 Trehalulose 221

10.7 D- Allose 222

10.8 D- Talose 224

10.9 Conclusions 224

Acknowledgment 225

References 225

11 Microbial Production of Bioactive Peptides 237
Adriano Gennari, Fernanda Leonhardt, Graziela Barbosa Paludo, Daniel Neutzling Lehn, Gaby Renard, Giandra Volpato, and Claucia Fernanda Volken de Souza

11.1 Introduction 237

11.2 Microbial Production of Peptides with Antioxidant Activity 238

11.3 Microbial Production of Peptides with Antimicrobial Activity 239

11.4 Microbial Production of Peptides with Antihypertensive Activity 240

11.5 Microbial Production of Peptides with Antidiabetic Activity 242

11.6 Microbial Production of Peptides with Immunomodulatory Activities 243

11.7 Microbial Production of Peptides with Antitumoral Activity 243

11.8 Microbial Production of Peptides with Opioid Activity 247

11.9 Microbial Production of Peptides with Antithrombotic Activity 248

11.10 Production of Recombinant Peptides in Microbial Expression Systems 249

11.11 Purification and Identification of Microbial Bioactive Peptides 251

11.12 Conclusions and Perspectives 252

References 253

12 Trends in Microbial Sources of Oils, Fats, and Fatty Acids for Industrial Use 261
Alaa Kareem Niamah, Deepak Kumar Verma, Shayma Thyab Gddoa Al- Sahlany, Soubhagya Tripathy, Smita Singh, Nihir Shah, Ami R. Patel, Mamta Thakur, Gemilang Lara Utama, Mónica L. Chávez- González, and Cristobal Noe Aguilar

12.1 Introduction 261

12.2 Microbial Sources 263

12.2.1 Microalgal Sources 264

12.2.2 Bacterial Sources 266

12.2.3 Fungal and Yeast Sources 267

12.3 Application in Food and Health 269

12.4 Opportunities and Prospective Future 270

12.5 Conclusion 271

References 271

13 Microbial Bioreactors for Secondary Metabolite Production 275
Luis V. Rodríguez- Durán, Mariela R. Michel, Alejandra Pichardo, and Pedro Aguilar- Zárate

13.1 Introduction 275

13.2 Design of Bioreactors 276

13.3 Types of Bioreactors for Secondary Metabolite Production 278

13.3.1 Stirred Tank Bioreactor (STB) 278

13.3.2 Bubble Column 280

13.3.3 Air- Lift 282

13.3.4 Biofilm Bioreactor 283

13.3.5 Solid- State Fermentation (SSF) Bioreactors 285

13.3.6 Tray Bioreactor 286

13.3.7 Packed Bed Bioreactor 287

13.3.8 Stirred and Rotating Drum Bioreactor 288

13.4 Conclusion 289

Acknowledgment 289

References 289

14 Microbial Cell Factories for Nitrilase Production and Its Applications 297
Neerja Thakur, Vinay Kumar, and Shashi Kant Bhatia

14.1 Introduction 297

14.2 Nitrilase Categorization, Sources, Metabolism, and Production Process 298

14.2.1 Nitrilase Categorization 298

14.2.2 Nitrilase Sources 298

14.2.3 Nitrilase in the Metabolism of Nitriles 298

14.2.4 Isolation and Screening of Nitrilase- Producing Microorganisms 299

14.2.5 Cultivation of Nitrilase- Producing Microbes 299

14.2.6 Nitrilase Production in Bioreactor 301

14.2.6.1 Factors Affecting Nitrilase Production in a Bioreactor 301

14.3 Nitrilase in the Biotransformation of Nitriles 302

14.3.1 Aliphatic Acids 305

14.3.1.1 Acrylic Acid 305

14.3.1.2 Glycolic Acid 305

14.3.2 Aromatic Acids 305

14.3.2.1 Nicotinic Acid 305

14.3.2.2 Isonicotinic Acid 306

14.3.2.3 Benzoic Acid 306

14.3.3 Arylacetic Acids 306

14.3.3.1 Mandelic Acid 306

14.3.3.2 Phenylacetic Acid 307

14.4 Conclusion 307

References 307

15 Chemistry and Sources of Lactase Enzyme with an Emphasis on Microbial Biotransformation in Milk 315
Alaa Kareem Niamah, Shayma Thyab Gddoa Al- Sahlany, Deepak Kumar Verma, Smita Singh, Soubhagya Tripathy, Deepika Baranwal, Nihir Shah, Ami R. Patel, Mamta Thakur, Gemilang Lara Utama, Mónica L. Chávez- González, and Cristobal Noe Aguilar

15.1 Introduction 315

15.2 Lactase Enzyme 316

15.3 Sources of Lactase 318

15.3.1 Plants 318

15.3.2 Bacteria 319

15.3.3 Yeasts 321

15.3.4 Molds 322

15.4 Microbial Biotransformation of Lactase Enzyme 322

15.4.1 Improvement of Microbial Strains 322

15.4.2 Galactooligosaccharide Synthesis and Transglycosylation 324

15.4.3 Lactose Intolerance 325

15.5 Conclusion 326

References 327

16 Microbial Biogas Production: Challenges and Opportunities 333
Diana B. Muñiz- Márquez, Christian Iván Cano- Gómez, Jorge Enrique Wong- Paz, Victor Emmanuel Balderas- Hernández, and Fabiola Veana

16.1 Introduction 333

16.2 Generalities of Biogas Production: the Process and Its Yields 334

16.3 Feedstocks Used in Biogas Production and Their Characteristics 336

16.4 Microbial Biodiversity in Biogas Production 337

16.4.1 Generalities 337

16.4.2 Anaerobic Fungi in Biogas Production 338

16.4.3 Anaerobic Bacteria in Biogas Production 340

16.4.4 Methanogenic Archaeal and Algae in Biogas Production 340

16.5 The Role of the Enzymes in Biogas Production 341

16.6 Challenges and Opportunities in Biogas Production 344

16.6.1 Challenges for Biogas Production 344

16.6.2 Opportunities for Biogas Production 346

References 347

17 Molecular Farming and Anticancer Vaccine: Current Opportunities and Openings 355
Yashwant Kumar Ratre, Arundhati Mehta, Sapnita Shinde, Vibha Sinha, Vivek Kumar Soni, Subash Chandra Sonkar, Dhananjay Shukla, and Naveen Kumar Vishvakarma

17.1 Introduction 355

17.2 Vaccines and the Possibility in Noncommunicable Diseases 356

17.3 Vaccine Production 357

17.3.1 Cancer Vaccine 358

17.4 Types of Cancer Vaccine 359

17.5 Microbial Production of Anticancer Vaccine: Challenges and Opportunities 361

17.5.1 Yeast- Based Cancer Vaccine (YBCV) 362

17.5.2 Bacteria- Based Cancer Vaccine (BBCV) 364

17.6 Conclusion 365

References 366

18 Microbial Bioreactors at Different Scales for the Alginate Production by Azotobacter vinelandii 375
Belén Ponce, Viviana Urtuvia, Tania Castillo, Daniel Segura, Carlos Peña, and Alvaro Díaz- Barrera

18.1 Introduction 375

18.2 Bacterial Alginate 376

18.2.1 Compositions and Structures 376

18.2.2 Applications 376

18.3 Alginate Biosynthesis and Genetic Regulation 376

18.4 Production of Bacterial Alginate on a Bioreactor Scale 380

18.4.1 Cultivation Modality for Alginate Production 380

18.4.2 Influence of Oxygen on Alginate Production 382

18.4.3 Influence of Cultivation Modality on the Molecular Weight of Alginate 384

18.5 Chemical Characterization of Alginate Quality 384

18.5.1 Scale- up of Alginate Production 385

18.6 Prospects and Conclusions 388

Acknowledgment 390

References 390

19 Environment- Friendly Microbial Bioremediation 397
Areej Shahbaz, Nazim Hussain, Tehreem Mahmood, Mubeen Ashraf, and Nida Khaliq

19.1 Introduction 397

19.2 Principle of Bioremediation 400

19.3 Types of Bioremediations 402

19.3.1 Biostimulation 402

19.3.2 Bioattenuation 402

19.3.3 Bioaugmentation 403

19.3.4 Genetically Engineered Microorganisms (GEMs) 403

19.4 Factors Affecting Microbial Bioremediation 404

19.4.1 Biological Factors 405

19.4.2 Environmental Factors 405

19.4.2.1 Availability of Nutrients 405

19.4.2.2 Temperature and pH 406

19.4.2.3 Concentration of Oxygen and Moisture Content 406

19.4.2.4 Site Characterization and Selection 406

19.4.2.5 Metal Ions and Toxic Compounds 407

19.5 Bioremediation Techniques 407

19.6 Methods for Ex Situ Bioremediation 408

19.6.1 Solid Phase Treatment 408

19.6.1.1 Slurry Phase Bioremediation 409

19.6.1.2 In Situ Bioremediation 409

19.6.2 Engineered Bioremediation 409

19.6.3 Intrinsic Bioremediation 410

19.7 Bioremediation Using Microbial Enzymes 410

19.7.1 Laccases 411

19.7.2 Lipases 411

19.7.3 Proteases 411

19.7.4 Peroxidases 411

19.7.5 Hydrolytic Enzymes 412

19.7.6 Oxidoreductases 412

19.8 Bioremediation Prospects 412

19.9 Future Prospective 414

19.10 Conclusion 415

References 415

20 Microbial Bioresource for Plastic- Degrading Enzymes 421
Ayodeji Amobonye, Christiana Eleojo Aruwa, and Santhosh Pillai

20.1 Introduction 421

20.2 Classification of Plastics: Biobased, Biodegradable, and Fossil- Based Plastics 423

20.2.1 Fossil- Based Plastics 423

20.2.2 Biobased Plastics 423

20.2.3 Biodegradable Plastics 424

20.3 General Mechanism of Plastic Biodegradation 424

20.4 Microbial Sources of Plastic- Degrading Enzymes 426

20.4.1 Actinomycetes 426

20.4.2 Algae 427

20.4.3 Bacteria 427

20.4.4 Fungi 428

20.5 Biotechnological Strategies for Identifying/Improving Microbial Enzymes and Their Sources for Plastic Biodegradation 429

20.5.1 Conventional Culturing Approach 429

20.5.2 Metagenomics 430

20.5.3 Recombinant Technology 431

20.5.4 Protein Engineering 431

20.6 Conclusion and Future Perspectives 432

References 434

21 Strategies, Trends, and Technological Advancements in Microbial Bioreactor System for Probiotic Products 443
Soubhagya Tripathy, Ami R. Patel, Deepak Kumar Verma, Smita Singh, Gemilang Lara Utama, Mamta Thakur, Alaa Kareem Niamah, Nihir Shah, Shayma Thyab Gddoa Al- Sahlany, Prem Prakash Srivastav, Mónica L. Chávez- González, and Cristobal Noe Aguilar

21.1 Introduction 443

21.2 Bioreactors and Production of Probiotics 444

21.2.1 Conventional Batch Bioreactor System 447

21.2.2 Membrane Bioreactor System 449

21.2.3 Co- culture Fermentation 452

21.2.4 Recent Methods for Producing Multiple Probiotic Strains 454

21.3 Strategies Employed for Harvesting and Drying Probiotic Cells 455

21.4 Final Remarks and Possible Directions for the Future 456

Abbreviations 457

References 457

22 Microbial Bioproduction of Antiaging Molecules 465
Ankita Dua, Aeshna Nigam, Anjali Saxena, Gauri Garg Dhingra, and Roshan Kumar

22.1 Introduction 465

22.2 The Aging Process: An Overview 466

22.3 Human Health and the Aging Gut Microbiome 468

22.4 The Antiaging Bioproducts from Microbes 469

22.4.1 Bacteria 469

22.4.2 Fungi 471

22.4.3 Algae 471

22.5 The Impact of Microbial Bioproducts on Gut Diversity 472

22.6 Microbial Bioproduction of Extremolytes 472

22.7 The Role of Antiaging and Antioxidant Molecules 473

22.8 Conclusions 480

References 480

Index 487

Authors

Sudhir Pratap Singh Center of Innovative and Applied Bioprocessing, Mohali, India. Santosh Kumar Upadhyay Panjab University, Chandigarh, India.