+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Mechanical and Dynamic Properties of Biocomposites. Edition No. 1

  • Book

  • 336 Pages
  • June 2021
  • John Wiley and Sons Ltd
  • ID: 5840646
Mechanical and Dynamic Properties of Biocomposites

A comprehensive review of the properties of biocomposites and their applications

Mechanical and Dynamic Properties of Biocomposites offers a comprehensive overview of the mechanical and dynamic properties of biocomposites and natural fiber-reinforced polymer composites. This essential resource helps with materials selection in the development of products in the fields of automotive and aerospace engineering as well as the construction of structures in civil engineering.

With contributions from a panel of experts in the field, the book reviews the mechanical and damping properties of lingo-cellulosic fibers and their composites. The authors highlight the factors that contribute to the improved properties and their advancements in modern industrialization.

Besides, the book is designed to (a) introduce the mechanical and damping properties of lingo-cellulosic fibers and their composites, (b) factors that contribute to improvement in properties such as hybridization, chemical treatment of natural fibers, additive or fillers, etc. and (c) the real-time applications with case studies and future prospects.

Key features:- Presents viable alternatives to conventional composites- Examines the environmentally friendly and favorable mechanical properties of biocomposites- Reviews the potential applications of biocomposites in the fields of automotive, mechanical and civil engineering- Brings together in one comprehensive resource information found scattered across the professional literature

Written for materials scientists, polymer chemists, chemists in industry, civil engineers, construction engineers, and engineering scientists in industry, Mechanical and Dynamic Properties of BIocomposites offers a compreshensive review of the properties and applications of biocomposites.

Table of Contents

1 Mechanical Behaviors of Natural Fiber-Reinforced Polymer Hybrid Composites 1
Adelani A. Oyeniran and Sikiru O. Ismail

1.1 Introduction 1

1.2 Concept of Natural Fibers and/or Biopolymers: Biocomposites 3

1.2.1 Natural Fiber-Reinforced Polymer Composites or Biocomposites 3

1.2.2 Polymer Matrices 4

1.3 Hybrid Natural Fiber-Reinforced Polymeric Biocomposites 7

1.4 Mechanical Behaviors of Natural Fiber-Reinforced Polymer-Based Hybrid Composites 10

1.4.1 Hybrid Natural FRP Composites 11

1.4.1.1 Bagasse/Jute FRP Hybrid Composites 11

1.4.1.2 Bamboo/MFC FRP Hybrid Composites 12

1.4.1.3 Banana/Kenaf and Banana/Sisal FRP Hybrid Composites 12

1.4.1.4 Coconut/Cork FRP Hybrid Composites 14

1.4.1.5 Coir/Silk FRP Hybrid Composites 15

1.4.1.6 Corn Husk/Kenaf FRP Hybrid Composites 16

1.4.1.7 Cotton/Jute and Cotton/Kapok FRP Hybrid Composites 16

1.4.1.8 Jute/OPEFB FRP Hybrid Composites 18

1.4.1.9 Kenaf/PALF FRP Hybrid Composites 18

1.4.1.10 Sisal/Roselle and Sisal/Silk FRP Hybrid Composites 19

1.5 Other Related Properties that Are Dependent on Mechanical Properties 20

1.5.1 Tribological Behavior 20

1.5.2 Thermal Behavior 21

1.6 Progress and Future Outlooks of Mechanical Behaviors of Natural FRP Hybrid Composites 21

1.7 Conclusions 22

References 23

2 Mechanical Behavior of Additive Manufactured Porous Biocomposites 27
Ramu Murugan and Mohanraj Thangamuthu

2.1 Introduction 27

2.2 Human Bone 27

2.3 Porous Scaffold 29

2.4 Biomaterials for Scaffolds 30

2.4.1 Required Properties of Biomaterials 30

2.4.2 Types of Biomaterials 31

2.4.2.1 Metals 31

2.4.2.2 Polymers 31

2.4.2.3 Ceramics 32

2.4.2.4 Composites 32

2.5 Additive Manufacturing of Porous Structures 33

2.5.1 Generic Process of AM 33

2.5.2 Powder Bed Fusion Process 34

2.5.3 Fused Deposition Modeling Process 35

2.5.4 Additive Manufacturing of Porous Biocomposites 35

2.6 Design of Porous Scaffold 36

2.6.1 Pore Size 36

2.6.2 Pore Geometry 37

2.6.3 Bioceramics as Reinforcement Material 37

2.7 Mechanical Characterization of Additive Manufactured Porous Biocomposites 38

2.8 Conclusion 41

References 41

3 Mechanical and Dynamic Mechanical Analysis of Bio-based Composites 49
R.A. Ilyas, S.M. Sapuan, M.R.M. Asyraf, M.S.N. Atikah, R. Ibrahim, Mohd N.F. Norrrahim, Tengku A.T. Yasim-Anuar, and Liana N. Megashah

3.1 Introduction 49

3.2 Mechanical Properties of Macro-scale Fiber 50

3.3 Mechanical Properties of Nano-scale Fiber 50

3.3.1 Factors Affecting Mechanical Properties of Bionanocomposites 50

3.3.1.1 Fabrication Method 51

3.3.1.2 Nanocellulose Loading 53

3.3.1.3 Nanocellulose Dispersion and Distribution 53

3.3.1.4 Nanocellulose Orientation 53

3.3.2 The Static Mechanical Properties of Bionanocomposites 54

3.4 Dynamic Mechanical Analysis (DMA) of Biocomposites 55

3.4.1 Single Fiber 57

3.4.1.1 Sugar Palm 57

3.4.1.2 Bamboo 57

3.4.1.3 Kenaf 59

3.4.1.4 Alfa 59

3.4.1.5 Carnauba 59

3.4.1.6 Pineapple Leaf Fiber (PALF) 60

3.4.1.7 Oil Palm Fiber (OPF) 60

3.4.1.8 Red Algae 60

3.4.1.9 Banana 61

3.4.1.10 Flax 62

3.4.1.11 Jute 62

3.4.1.12 Hemp 63

3.4.1.13 Waste Silk Fiber 63

3.4.1.14 Henequen 64

3.4.2 Hybrid Fiber 64

3.4.2.1 Sisal/Oil Palm 64

3.4.2.2 Coir/PALF 65

3.4.2.3 Kenaf/PALF 65

3.4.2.4 Palmyra Palm Leaf Stalk Fiber (PPLSF)/Jute 66

3.4.2.5 Oil Palm Empty Fruit Bunch (OPEFB)/Cellulose 66

3.5 Dynamic Mechanical Properties of Bionanocomposites 66

3.5.1 The Dynamic Mechanical Properties of Bionano composites 67

3.6 Conclusion 68

References 68

4 Physical and Mechanical Properties of Biocomposites Based on Lignocellulosic Fibers 77
Nadir Ayrilmis, Sarawut Rimdusit, Rajini Nagarajan, and M.P. Indira Devi

4.1 Introduction 77

4.2 Major Factors Influencing Quality of Biocomposites 82

4.2.1 Selection of Natural Fibers 82

4.2.2 Effect of Fiber/Particle Size on the Physical and Mechanical Properties of Biocomposites 85

4.2.3 Effect of Filler Content on the Mechanical Properties of Biocomposites 88

4.2.4 Compatibility Between Natural Fiber/Polymer Matrix and Surface Modification 91

4.2.5 Type of Polymer Matrix 95

4.2.6 Processing Conditions in the Manufacture of Biocomposite 96

4.2.7 Presence of Voids and Porosity 98

4.2.8 Nanocellulose-Reinforced Biocomposites 98

4.2.8.1 Preparation and Properties of Cellulose Nanofibers 101

4.2.8.2 Industrial Applications of Cellulose Nanofibers 101

4.3 Conclusions 103

References 103

5 Machinability Analysis on Biowaste Bagasse-Fiber-Reinforced Vinyl Ester Composite Using S/N Ratio and ANOVA Method 109
Balasubramaniam Stalin, Ayyanar Athijayamani, and Rajini Nagarajan

5.1 Introduction 109

5.2 Experimental Methodology 111

5.2.1 Materials 111

5.2.2 Specimen Preparation 111

5.2.3 Machining of the Composite Specimen 111

5.2.4 Selection of Orthogonal Array 111

5.2.5 Development of Multivariable Nonlinear Regression Model 113

5.3 Results and Discussion 114

5.3.1 Influence of Machining Parameters on Thrust Force and Torque 114

5.3.2 S/N Ratio 115

5.3.3 ANOVA 115

5.3.4 Correlation of Machining Parameters with Responses 116

5.3.5 Confirmation Test 117

5.4 Conclusions 118

References 118

6 Mechanical and Dynamic Properties of Kenaf-Fiber-Reinforced Composites 121
Brijesh Gangil, Lalit Ranakoti, and Pawan K. Rakesh

6.1 Introduction 121

6.2 Mechanical Properties of Kenaf-Fiber-Reinforced Polymer Composite 122

6.3 Dynamic Mechanical Analysis 124

6.4 Storage Modulus (E’) of Kenaf Fiber-Polymer Composite 125

6.5 Loss Modulus (E’’) of Kenaf Fiber-Polymer Composite 125

6.6 Damping Factor (Tan 𝛿) 126

6.7 Glass Transition Temperatures (Tg) 127

6.8 Conclusion 130

References 131

7 Investigation on Mechanical Properties of Surface-Treated Natural Fibers-Reinforced Polymer Composites 135
Sabarish Radoor, Jasila Karayil, Aswathy Jayakumar, and Suchart Siengchin

7.1 Introduction 135

7.2 Mechanical Properties of Natural Fibers 135

7.3 Drawbacks of Natural Fibers 136

7.4 Surface Modification of Natural Fibers 137

7.4.1 Chemical Treatment 137

7.4.2 Alkaline Treatment 137

7.4.3 Silane Treatment 140

7.4.4 Acetylation Treatment 143

7.4.5 Benzylation Treatment 145

7.4.6 Peroxide Treatment 146

7.5 Maleated Coupling Agents 147

7.5.1 Isocyanate 148

7.5.2 Permanganate Treatment 150

7.5.3 Stearic Acid Treatment 151

7.5.4 Physical Treatment 152

7.5.5 Plasma Treatment 152

7.5.6 Corona Treatment 154

7.5.7 Ozone Treatment 155

7.6 Summary 156

References 156

8 Mechanical and Tribological Characteristics of IndustrialWaste and Agro Waste Based Hybrid Composites 163
Vigneswaran Shanmugam, Uthayakumar Marimuthu, Veerasimman Arumugaprabu, Sundarakannan Rajendran, and Rajendran Deepak Joel Johnson

8.1 Introduction 163

8.2 Materials and Methods 164

8.2.1 Scanning Electron Microscopy (SEM) 166

8.3 Result and Discussion 166

8.3.1 Effect of Chemical Treatment on Fiber 166

8.3.2 Mechanical Behavior 167

8.3.3 Erosion Behavior 169

8.3.3.1 Effect of Fiber Treatment on Erosion Rate 169

8.3.3.2 Effect of Red Mud Addition on Erosion Rate 170

8.3.3.3 Effect of Impact Angle on Erosion Rate 170

8.4 Conclusion 173

References 173

9 Dynamic Properties of Kenaf-Fiber-Reinforced Composites 175
Rashed Al Mizan, Nur N. Akter, and Mohammad I. Iqbal

9.1 Introduction 175

9.2 Manufacturing Techniques for Kenaf-Fiber-Reinforced Composites 176

9.3 Characterization 177

9.3.1 Dynamic Mechanical Analysis (DMA) 178

9.3.2 Thermogravimetric Analysis (TGA) 178

9.3.3 Vibration-Damping Testing 178

9.3.4 Acoustic Properties 179

9.4 Overview of the Dynamics Properties of Kenaf-Fiber-Reinforced Composite 179

9.4.1 Dynamic Mechanical Properties (DMA) 180

9.4.2 TGA Analysis of Composites 184

9.4.3 Acoustic Properties 186

9.5 Conclusion 187

References 187

10 Effect of Micro-Dry-Leaves Filler and Al-SiC Reinforcement on the Thermomechanical Properties of Epoxy Composites 191
Mohit Hemath, Govindrajulu Hemath Kumar, Varadhappan Arul Mozhi Selvan, Mavinkere R. Sanjay, and Suchart Siengchin

10.1 Introduction 191

10.2 Materials and Methods 193

10.2.1 Materials 193

10.2.2 Production of Al-SiC Nanoparticles 193

10.2.3 Fabrication of Epoxy Composites 194

10.2.4 Epoxy Composite Characterization 194

10.2.4.1 Porosity, Density, and Volume Fraction 194

10.2.4.2 Tensile Properties 194

10.2.4.3 Flexural Properties 194

10.2.4.4 Impact Strength 195

10.2.4.5 Dynamic Mechanical Analysis (DMA) 195

10.2.4.6 Morphological Properties 195

10.3 Results and Discussion 195

10.3.1 Quality of Fabrication and Volume Fraction of Epoxy Composites 195

10.3.2 Tensile Characteristics 196

10.3.3 Flexural Characteristics 197

10.3.4 Impact Characteristics 198

10.3.5 Dynamic Mechanical Analysis 199

10.3.5.1 Storage Modulus 199

10.3.5.2 Loss Modulus 200

10.3.5.3 Damping Factor 201

10.3.6 Morphological Characteristics 201

10.4 Conclusion 201

References 202

11 Effect of Fillers on Natural Fiber-Polymer Composite: An Overview of Physical and Mechanical Properties 207
Annamalai Saravanakumaar, Arunachalam Senthilkumar, and Balasundaram Muthu Chozha Rajan

11.1 Introduction 207

11.2 Influence of Cellulose Micro-filler on the Flax, Pineapple Fiber-Reinforced Epoxy Matrix Composites 208

11.3 Influence of Sugarcane Bagasse Filler on the Cardanol Polymer Matrix Composites 208

11.4 Influence of Sugarcane Bagasse Filler on the Natural Rubber Composites 209

11.5 Influence of Fly Ash onWood Fiber Geopolymer Composites 210

11.6 Influence of Eggshell Powder/Nanoclay Filler on the Jute Fiber Polyester Composites 211

11.7 Influence of Portunus sanguinolentus Shell Powder on the Jute Fiber-Epoxy Composite 212

11.8 Influence of Nano-SiO2 Filler on the Phaseolus vulgaris Fiber-Polyester Composite 214

11.9 Influence of Aluminum Hydroxide (Al(OH)3) Filler on the Vulgaris Banana Fiber-Epoxy Composite 215

11.10 Influence of Palm and Coconut Shell Filler on the Hemp-Kevlar Fiber-Epoxy Composite 216

11.11 Influence of Coir Powder Filler on Polyester Composite 217

11.12 Influence of CaCO3 (Calcium Carbonate) Filler on the Luffa Fiber-Epoxy Composite 217

11.13 Influence of Pineapple Leaf, Napier, and Hemp Fiber Filler on Epoxy Composite 218

11.14 Influence of Dipotassium Phosphate Filler on Wheat Straw Fiber-Natural Rubber Composite 220

11.15 Influence of Groundnut Shell, Rice Husk, andWood Powder Fillers on the Luffa cylindrica Fiber-Polyester Composite 220

11.16 Influence of Rice Husk Fillers on the Bauhinia vahlii - Sisal Fiber-Epoxy Composite 221

11.17 Influence of Areca Fine Fiber Fillers on the Calotropis gigantea Fiber Phenol Formaldehyde Composite 221

11.18 Influence of Tamarind Seed Fillers on the Flax Fiber-Liquid Thermoplastic Composite 223

11.19 Influence ofWalnut Shell, Hazelnut Shell, and Sunflower Husk Fillers on the Epoxy Composites 223

11.20 Influence ofWaste Vegetable Peel Fillers on the Epoxy Composite 224

11.21 Influence of Clusia multiflora Saw Dust Fillers on the Rubber Composite 224

11.22 Influence ofWood Flour Fillers on the Red Banana Peduncle Fiber Polyester Composite 225

11.23 Influence ofWood Dust Fillers (Rosewood and Padauk) on the Jute Fiber-Epoxy Composite 225

11.24 Summary 226

11.25 Conclusions 226

References 231

12 Temperature-Dependent Dynamic Mechanical Properties and Static Mechanical Properties of Sansevieria cylindrical Reinforced Biochar-Tailored Vinyl Ester Composite 235
Rajendran Deepak Joel Johnson, Veerasimman Arumugaprabu, Rajini Nagarajan, Fernando G. Souza, and Vigneswaran Shanmugam

12.1 Introduction 235

12.2 Materials and Method 236

12.2.1 Materials 236

12.2.2 Biochar Characterization 238

12.2.2.1 Particle Size Analyzer 238

12.2.2.2 X-ray Diffraction 238

12.2.2.3 FTIR Spectroscopy 238

12.2.3 Composite Fabrication 239

12.2.4 Dynamic Mechanical Analysis (DMA) 239

12.2.5 Tensile Testing 239

12.2.6 Flexural Testing 240

12.2.7 Impact Testing 240

12.2.8 Scanning Electron Microscopy 240

12.3 Results and Discussion 240

12.3.1 Biochar Characterization 240

12.3.1.1 Particle Analyzer 240

12.3.1.2 Fourier Transform (InfraRed) Spectroscopy 240

12.3.1.3 X-ray Diffraction 242

12.3.2 Dynamic Mechanical Analysis 243

12.3.3 Tensile Tests 247

12.3.4 Flexural Tests 248

12.3.5 Impact Tests 249

12.4 Conclusions 251

References 251

13 Development and Sustainability of Biochar Derived from Cashew Nutshell-Reinforced Polymer Matrix Composite 255
Rajendren Sundarakannan, Vigneswaran Shanmugam, Veerasimman Arumugaprabu, Vairavan Manikandan, and Paramasivan Sivaranjana

13.1 Introduction 255

13.2 Materials and Methods 257

13.2.1 Biochar Preparation 257

13.2.2 Composite Preparation 257

13.2.3 Mechanical Testing 258

13.3 Results and Discussion 258

13.3.1 Tensile Strength 258

13.3.2 Flexural Strength 259

13.3.3 Impact Strength 260

13.3.4 Hardness 260

13.3.5 Failure Analysis of Cashew NutshellWaste Extracted Biochar-Reinforced Polymer Composites 261

13.3.5.1 Tensile Strength Failure Analysis 261

13.3.5.2 Flexural Strength Failure Analysis 262

13.3.5.3 Impact Strength Failure Analysis 262

13.4 Conclusion 263

References 263

14 Influence of Fiber Loading on the Mechanical Properties and Moisture Absorption of the Sisal Fiber-Reinforced Epoxy Composites 265
Banisetti Manoj, Chandrasekar Muthukumar, Chennuri Phani Durga Prasad, Swathi Manickam, and Titus I. Benjamin

14.1 Introduction 265

14.1.1 Sisal Fibers 265

14.1.2 Fiber Parameters Affecting Mechanical Properties of the Composite 266

14.2 Materials and Methods 266

14.2.1 Materials 266

14.2.2 Fabrication Method 266

14.2.3 Characterization 266

14.2.3.1 Tensile Test 266

14.2.3.2 Flexural Test 267

14.2.3.3 Moisture Diffusion 267

14.3 Results and Discussion 267

14.3.1 Tensile Properties 267

14.3.2 Flexural Properties 269

14.3.3 Water Absorption 271

14.4 Conclusion 272

References 272

15 Mechanical and Dynamic Properties of Ramie Fiber-Reinforced Composites 275
Manickam Ramesh, Lakshminarasimhan Rajeshkumar, and Devarajan Balaji

15.1 Introduction 275

15.2 Mechanical Strength of Ramie Fiber Composites 277

15.3 Dynamic Properties of Ramie Fiber Composites 281

15.3.1 Temperature Influence 283

15.3.2 Storage Modulus 283

15.3.3 Viscous Modulus 284

15.3.4 Damping Factor 284

15.4 Conclusion 288

References 289

16 Fracture Toughness of the Natural Fiber-Reinforced Composites: A Review 293
Haasith Chittimenu, Monesh Pasupureddy, Chandrasekar Muthukumar, Senthilkumar Krishnasamy, Senthil Muthu Kumar Thiagamani, and Suchart Siengchin

16.1 Introduction 293

16.1.1 Fracture Toughness Tests 294

16.1.2 Mode-I Loading 296

16.1.2.1 Double Cantilever Beam Method (DCB) 296

16.1.2.2 Compact Tensile Method (CT) 296

16.1.2.3 Single-Edge Notch Bend Test (SENB) 296

16.1.3 Mode-II Loading 297

16.1.3.1 End-Notched Flexure Test (ENF) 297

16.1.4 Mode-III Loading 297

16.1.4.1 Split Cantilever Beam Method (SCB) 297

16.1.4.2 Edge Crack Torsion Test (ECT) 298

16.1.4.3 Mixed Mode Bend Test (MMB) 298

16.2 Factors Affecting the Fracture Energy of the Biocomposites 298

16.2.1 Fiber Parameters 298

16.2.2 Hybridization 299

16.2.3 Fiber Treatment 299

16.2.4 Aging 301

16.3 Conclusion 302

Acknowledgments 302

References 302

17 Dynamic Mechanical Behavior of Hybrid Flax/Basalt Fiber Polymer Composites 305
Arun Prasath Kanagaraj, Amuthakkannan Pandian, Veerasimman Arumugaprabu, Rajendran Deepak Joel Johnson, Vigneswaran Shanmugam, and Vairavan Manikandan

17.1 Introduction 305

17.2 Materials and Methods 307

17.2.1 Materials 307

17.2.2 Fabrication of Composites 307

17.2.3 Dynamic Mechanical Analysis 307

17.3 Result and Discussion 308

17.3.1 Damping Factor (Tan 𝛿) Response of Basalt/Flax Fiber Composite 308

17.3.2 Storage Modulus (E′) Response of Basalt/Flax Fiber Composite 308

17.3.3 Loss Modulus Performance of Basalt/Flax Fiber Composites 309

17.4 Conclusions 309

Acknowledgments 310

References 310

Index 313

Authors

Senthilkumar Krishnasamy Rajini Nagarajan Senthil Muthu Kumar Thiagamani Suchart Siengchin