A comprehensive review of the properties of biocomposites and their applications
Mechanical and Dynamic Properties of Biocomposites offers a comprehensive overview of the mechanical and dynamic properties of biocomposites and natural fiber-reinforced polymer composites. This essential resource helps with materials selection in the development of products in the fields of automotive and aerospace engineering as well as the construction of structures in civil engineering.
With contributions from a panel of experts in the field, the book reviews the mechanical and damping properties of lingo-cellulosic fibers and their composites. The authors highlight the factors that contribute to the improved properties and their advancements in modern industrialization.
Besides, the book is designed to (a) introduce the mechanical and damping properties of lingo-cellulosic fibers and their composites, (b) factors that contribute to improvement in properties such as hybridization, chemical treatment of natural fibers, additive or fillers, etc. and (c) the real-time applications with case studies and future prospects.
Key features:- Presents viable alternatives to conventional composites- Examines the environmentally friendly and favorable mechanical properties of biocomposites- Reviews the potential applications of biocomposites in the fields of automotive, mechanical and civil engineering- Brings together in one comprehensive resource information found scattered across the professional literature
Written for materials scientists, polymer chemists, chemists in industry, civil engineers, construction engineers, and engineering scientists in industry, Mechanical and Dynamic Properties of BIocomposites offers a compreshensive review of the properties and applications of biocomposites.
Table of Contents
1 Mechanical Behaviors of Natural Fiber-Reinforced Polymer Hybrid Composites 1
Adelani A. Oyeniran and Sikiru O. Ismail
1.1 Introduction 1
1.2 Concept of Natural Fibers and/or Biopolymers: Biocomposites 3
1.2.1 Natural Fiber-Reinforced Polymer Composites or Biocomposites 3
1.2.2 Polymer Matrices 4
1.3 Hybrid Natural Fiber-Reinforced Polymeric Biocomposites 7
1.4 Mechanical Behaviors of Natural Fiber-Reinforced Polymer-Based Hybrid Composites 10
1.4.1 Hybrid Natural FRP Composites 11
1.4.1.1 Bagasse/Jute FRP Hybrid Composites 11
1.4.1.2 Bamboo/MFC FRP Hybrid Composites 12
1.4.1.3 Banana/Kenaf and Banana/Sisal FRP Hybrid Composites 12
1.4.1.4 Coconut/Cork FRP Hybrid Composites 14
1.4.1.5 Coir/Silk FRP Hybrid Composites 15
1.4.1.6 Corn Husk/Kenaf FRP Hybrid Composites 16
1.4.1.7 Cotton/Jute and Cotton/Kapok FRP Hybrid Composites 16
1.4.1.8 Jute/OPEFB FRP Hybrid Composites 18
1.4.1.9 Kenaf/PALF FRP Hybrid Composites 18
1.4.1.10 Sisal/Roselle and Sisal/Silk FRP Hybrid Composites 19
1.5 Other Related Properties that Are Dependent on Mechanical Properties 20
1.5.1 Tribological Behavior 20
1.5.2 Thermal Behavior 21
1.6 Progress and Future Outlooks of Mechanical Behaviors of Natural FRP Hybrid Composites 21
1.7 Conclusions 22
References 23
2 Mechanical Behavior of Additive Manufactured Porous Biocomposites 27
Ramu Murugan and Mohanraj Thangamuthu
2.1 Introduction 27
2.2 Human Bone 27
2.3 Porous Scaffold 29
2.4 Biomaterials for Scaffolds 30
2.4.1 Required Properties of Biomaterials 30
2.4.2 Types of Biomaterials 31
2.4.2.1 Metals 31
2.4.2.2 Polymers 31
2.4.2.3 Ceramics 32
2.4.2.4 Composites 32
2.5 Additive Manufacturing of Porous Structures 33
2.5.1 Generic Process of AM 33
2.5.2 Powder Bed Fusion Process 34
2.5.3 Fused Deposition Modeling Process 35
2.5.4 Additive Manufacturing of Porous Biocomposites 35
2.6 Design of Porous Scaffold 36
2.6.1 Pore Size 36
2.6.2 Pore Geometry 37
2.6.3 Bioceramics as Reinforcement Material 37
2.7 Mechanical Characterization of Additive Manufactured Porous Biocomposites 38
2.8 Conclusion 41
References 41
3 Mechanical and Dynamic Mechanical Analysis of Bio-based Composites 49
R.A. Ilyas, S.M. Sapuan, M.R.M. Asyraf, M.S.N. Atikah, R. Ibrahim, Mohd N.F. Norrrahim, Tengku A.T. Yasim-Anuar, and Liana N. Megashah
3.1 Introduction 49
3.2 Mechanical Properties of Macro-scale Fiber 50
3.3 Mechanical Properties of Nano-scale Fiber 50
3.3.1 Factors Affecting Mechanical Properties of Bionanocomposites 50
3.3.1.1 Fabrication Method 51
3.3.1.2 Nanocellulose Loading 53
3.3.1.3 Nanocellulose Dispersion and Distribution 53
3.3.1.4 Nanocellulose Orientation 53
3.3.2 The Static Mechanical Properties of Bionanocomposites 54
3.4 Dynamic Mechanical Analysis (DMA) of Biocomposites 55
3.4.1 Single Fiber 57
3.4.1.1 Sugar Palm 57
3.4.1.2 Bamboo 57
3.4.1.3 Kenaf 59
3.4.1.4 Alfa 59
3.4.1.5 Carnauba 59
3.4.1.6 Pineapple Leaf Fiber (PALF) 60
3.4.1.7 Oil Palm Fiber (OPF) 60
3.4.1.8 Red Algae 60
3.4.1.9 Banana 61
3.4.1.10 Flax 62
3.4.1.11 Jute 62
3.4.1.12 Hemp 63
3.4.1.13 Waste Silk Fiber 63
3.4.1.14 Henequen 64
3.4.2 Hybrid Fiber 64
3.4.2.1 Sisal/Oil Palm 64
3.4.2.2 Coir/PALF 65
3.4.2.3 Kenaf/PALF 65
3.4.2.4 Palmyra Palm Leaf Stalk Fiber (PPLSF)/Jute 66
3.4.2.5 Oil Palm Empty Fruit Bunch (OPEFB)/Cellulose 66
3.5 Dynamic Mechanical Properties of Bionanocomposites 66
3.5.1 The Dynamic Mechanical Properties of Bionano composites 67
3.6 Conclusion 68
References 68
4 Physical and Mechanical Properties of Biocomposites Based on Lignocellulosic Fibers 77
Nadir Ayrilmis, Sarawut Rimdusit, Rajini Nagarajan, and M.P. Indira Devi
4.1 Introduction 77
4.2 Major Factors Influencing Quality of Biocomposites 82
4.2.1 Selection of Natural Fibers 82
4.2.2 Effect of Fiber/Particle Size on the Physical and Mechanical Properties of Biocomposites 85
4.2.3 Effect of Filler Content on the Mechanical Properties of Biocomposites 88
4.2.4 Compatibility Between Natural Fiber/Polymer Matrix and Surface Modification 91
4.2.5 Type of Polymer Matrix 95
4.2.6 Processing Conditions in the Manufacture of Biocomposite 96
4.2.7 Presence of Voids and Porosity 98
4.2.8 Nanocellulose-Reinforced Biocomposites 98
4.2.8.1 Preparation and Properties of Cellulose Nanofibers 101
4.2.8.2 Industrial Applications of Cellulose Nanofibers 101
4.3 Conclusions 103
References 103
5 Machinability Analysis on Biowaste Bagasse-Fiber-Reinforced Vinyl Ester Composite Using S/N Ratio and ANOVA Method 109
Balasubramaniam Stalin, Ayyanar Athijayamani, and Rajini Nagarajan
5.1 Introduction 109
5.2 Experimental Methodology 111
5.2.1 Materials 111
5.2.2 Specimen Preparation 111
5.2.3 Machining of the Composite Specimen 111
5.2.4 Selection of Orthogonal Array 111
5.2.5 Development of Multivariable Nonlinear Regression Model 113
5.3 Results and Discussion 114
5.3.1 Influence of Machining Parameters on Thrust Force and Torque 114
5.3.2 S/N Ratio 115
5.3.3 ANOVA 115
5.3.4 Correlation of Machining Parameters with Responses 116
5.3.5 Confirmation Test 117
5.4 Conclusions 118
References 118
6 Mechanical and Dynamic Properties of Kenaf-Fiber-Reinforced Composites 121
Brijesh Gangil, Lalit Ranakoti, and Pawan K. Rakesh
6.1 Introduction 121
6.2 Mechanical Properties of Kenaf-Fiber-Reinforced Polymer Composite 122
6.3 Dynamic Mechanical Analysis 124
6.4 Storage Modulus (E’) of Kenaf Fiber-Polymer Composite 125
6.5 Loss Modulus (E’’) of Kenaf Fiber-Polymer Composite 125
6.6 Damping Factor (Tan 𝛿) 126
6.7 Glass Transition Temperatures (Tg) 127
6.8 Conclusion 130
References 131
7 Investigation on Mechanical Properties of Surface-Treated Natural Fibers-Reinforced Polymer Composites 135
Sabarish Radoor, Jasila Karayil, Aswathy Jayakumar, and Suchart Siengchin
7.1 Introduction 135
7.2 Mechanical Properties of Natural Fibers 135
7.3 Drawbacks of Natural Fibers 136
7.4 Surface Modification of Natural Fibers 137
7.4.1 Chemical Treatment 137
7.4.2 Alkaline Treatment 137
7.4.3 Silane Treatment 140
7.4.4 Acetylation Treatment 143
7.4.5 Benzylation Treatment 145
7.4.6 Peroxide Treatment 146
7.5 Maleated Coupling Agents 147
7.5.1 Isocyanate 148
7.5.2 Permanganate Treatment 150
7.5.3 Stearic Acid Treatment 151
7.5.4 Physical Treatment 152
7.5.5 Plasma Treatment 152
7.5.6 Corona Treatment 154
7.5.7 Ozone Treatment 155
7.6 Summary 156
References 156
8 Mechanical and Tribological Characteristics of IndustrialWaste and Agro Waste Based Hybrid Composites 163
Vigneswaran Shanmugam, Uthayakumar Marimuthu, Veerasimman Arumugaprabu, Sundarakannan Rajendran, and Rajendran Deepak Joel Johnson
8.1 Introduction 163
8.2 Materials and Methods 164
8.2.1 Scanning Electron Microscopy (SEM) 166
8.3 Result and Discussion 166
8.3.1 Effect of Chemical Treatment on Fiber 166
8.3.2 Mechanical Behavior 167
8.3.3 Erosion Behavior 169
8.3.3.1 Effect of Fiber Treatment on Erosion Rate 169
8.3.3.2 Effect of Red Mud Addition on Erosion Rate 170
8.3.3.3 Effect of Impact Angle on Erosion Rate 170
8.4 Conclusion 173
References 173
9 Dynamic Properties of Kenaf-Fiber-Reinforced Composites 175
Rashed Al Mizan, Nur N. Akter, and Mohammad I. Iqbal
9.1 Introduction 175
9.2 Manufacturing Techniques for Kenaf-Fiber-Reinforced Composites 176
9.3 Characterization 177
9.3.1 Dynamic Mechanical Analysis (DMA) 178
9.3.2 Thermogravimetric Analysis (TGA) 178
9.3.3 Vibration-Damping Testing 178
9.3.4 Acoustic Properties 179
9.4 Overview of the Dynamics Properties of Kenaf-Fiber-Reinforced Composite 179
9.4.1 Dynamic Mechanical Properties (DMA) 180
9.4.2 TGA Analysis of Composites 184
9.4.3 Acoustic Properties 186
9.5 Conclusion 187
References 187
10 Effect of Micro-Dry-Leaves Filler and Al-SiC Reinforcement on the Thermomechanical Properties of Epoxy Composites 191
Mohit Hemath, Govindrajulu Hemath Kumar, Varadhappan Arul Mozhi Selvan, Mavinkere R. Sanjay, and Suchart Siengchin
10.1 Introduction 191
10.2 Materials and Methods 193
10.2.1 Materials 193
10.2.2 Production of Al-SiC Nanoparticles 193
10.2.3 Fabrication of Epoxy Composites 194
10.2.4 Epoxy Composite Characterization 194
10.2.4.1 Porosity, Density, and Volume Fraction 194
10.2.4.2 Tensile Properties 194
10.2.4.3 Flexural Properties 194
10.2.4.4 Impact Strength 195
10.2.4.5 Dynamic Mechanical Analysis (DMA) 195
10.2.4.6 Morphological Properties 195
10.3 Results and Discussion 195
10.3.1 Quality of Fabrication and Volume Fraction of Epoxy Composites 195
10.3.2 Tensile Characteristics 196
10.3.3 Flexural Characteristics 197
10.3.4 Impact Characteristics 198
10.3.5 Dynamic Mechanical Analysis 199
10.3.5.1 Storage Modulus 199
10.3.5.2 Loss Modulus 200
10.3.5.3 Damping Factor 201
10.3.6 Morphological Characteristics 201
10.4 Conclusion 201
References 202
11 Effect of Fillers on Natural Fiber-Polymer Composite: An Overview of Physical and Mechanical Properties 207
Annamalai Saravanakumaar, Arunachalam Senthilkumar, and Balasundaram Muthu Chozha Rajan
11.1 Introduction 207
11.2 Influence of Cellulose Micro-filler on the Flax, Pineapple Fiber-Reinforced Epoxy Matrix Composites 208
11.3 Influence of Sugarcane Bagasse Filler on the Cardanol Polymer Matrix Composites 208
11.4 Influence of Sugarcane Bagasse Filler on the Natural Rubber Composites 209
11.5 Influence of Fly Ash onWood Fiber Geopolymer Composites 210
11.6 Influence of Eggshell Powder/Nanoclay Filler on the Jute Fiber Polyester Composites 211
11.7 Influence of Portunus sanguinolentus Shell Powder on the Jute Fiber-Epoxy Composite 212
11.8 Influence of Nano-SiO2 Filler on the Phaseolus vulgaris Fiber-Polyester Composite 214
11.9 Influence of Aluminum Hydroxide (Al(OH)3) Filler on the Vulgaris Banana Fiber-Epoxy Composite 215
11.10 Influence of Palm and Coconut Shell Filler on the Hemp-Kevlar Fiber-Epoxy Composite 216
11.11 Influence of Coir Powder Filler on Polyester Composite 217
11.12 Influence of CaCO3 (Calcium Carbonate) Filler on the Luffa Fiber-Epoxy Composite 217
11.13 Influence of Pineapple Leaf, Napier, and Hemp Fiber Filler on Epoxy Composite 218
11.14 Influence of Dipotassium Phosphate Filler on Wheat Straw Fiber-Natural Rubber Composite 220
11.15 Influence of Groundnut Shell, Rice Husk, andWood Powder Fillers on the Luffa cylindrica Fiber-Polyester Composite 220
11.16 Influence of Rice Husk Fillers on the Bauhinia vahlii - Sisal Fiber-Epoxy Composite 221
11.17 Influence of Areca Fine Fiber Fillers on the Calotropis gigantea Fiber Phenol Formaldehyde Composite 221
11.18 Influence of Tamarind Seed Fillers on the Flax Fiber-Liquid Thermoplastic Composite 223
11.19 Influence ofWalnut Shell, Hazelnut Shell, and Sunflower Husk Fillers on the Epoxy Composites 223
11.20 Influence ofWaste Vegetable Peel Fillers on the Epoxy Composite 224
11.21 Influence of Clusia multiflora Saw Dust Fillers on the Rubber Composite 224
11.22 Influence ofWood Flour Fillers on the Red Banana Peduncle Fiber Polyester Composite 225
11.23 Influence ofWood Dust Fillers (Rosewood and Padauk) on the Jute Fiber-Epoxy Composite 225
11.24 Summary 226
11.25 Conclusions 226
References 231
12 Temperature-Dependent Dynamic Mechanical Properties and Static Mechanical Properties of Sansevieria cylindrical Reinforced Biochar-Tailored Vinyl Ester Composite 235
Rajendran Deepak Joel Johnson, Veerasimman Arumugaprabu, Rajini Nagarajan, Fernando G. Souza, and Vigneswaran Shanmugam
12.1 Introduction 235
12.2 Materials and Method 236
12.2.1 Materials 236
12.2.2 Biochar Characterization 238
12.2.2.1 Particle Size Analyzer 238
12.2.2.2 X-ray Diffraction 238
12.2.2.3 FTIR Spectroscopy 238
12.2.3 Composite Fabrication 239
12.2.4 Dynamic Mechanical Analysis (DMA) 239
12.2.5 Tensile Testing 239
12.2.6 Flexural Testing 240
12.2.7 Impact Testing 240
12.2.8 Scanning Electron Microscopy 240
12.3 Results and Discussion 240
12.3.1 Biochar Characterization 240
12.3.1.1 Particle Analyzer 240
12.3.1.2 Fourier Transform (InfraRed) Spectroscopy 240
12.3.1.3 X-ray Diffraction 242
12.3.2 Dynamic Mechanical Analysis 243
12.3.3 Tensile Tests 247
12.3.4 Flexural Tests 248
12.3.5 Impact Tests 249
12.4 Conclusions 251
References 251
13 Development and Sustainability of Biochar Derived from Cashew Nutshell-Reinforced Polymer Matrix Composite 255
Rajendren Sundarakannan, Vigneswaran Shanmugam, Veerasimman Arumugaprabu, Vairavan Manikandan, and Paramasivan Sivaranjana
13.1 Introduction 255
13.2 Materials and Methods 257
13.2.1 Biochar Preparation 257
13.2.2 Composite Preparation 257
13.2.3 Mechanical Testing 258
13.3 Results and Discussion 258
13.3.1 Tensile Strength 258
13.3.2 Flexural Strength 259
13.3.3 Impact Strength 260
13.3.4 Hardness 260
13.3.5 Failure Analysis of Cashew NutshellWaste Extracted Biochar-Reinforced Polymer Composites 261
13.3.5.1 Tensile Strength Failure Analysis 261
13.3.5.2 Flexural Strength Failure Analysis 262
13.3.5.3 Impact Strength Failure Analysis 262
13.4 Conclusion 263
References 263
14 Influence of Fiber Loading on the Mechanical Properties and Moisture Absorption of the Sisal Fiber-Reinforced Epoxy Composites 265
Banisetti Manoj, Chandrasekar Muthukumar, Chennuri Phani Durga Prasad, Swathi Manickam, and Titus I. Benjamin
14.1 Introduction 265
14.1.1 Sisal Fibers 265
14.1.2 Fiber Parameters Affecting Mechanical Properties of the Composite 266
14.2 Materials and Methods 266
14.2.1 Materials 266
14.2.2 Fabrication Method 266
14.2.3 Characterization 266
14.2.3.1 Tensile Test 266
14.2.3.2 Flexural Test 267
14.2.3.3 Moisture Diffusion 267
14.3 Results and Discussion 267
14.3.1 Tensile Properties 267
14.3.2 Flexural Properties 269
14.3.3 Water Absorption 271
14.4 Conclusion 272
References 272
15 Mechanical and Dynamic Properties of Ramie Fiber-Reinforced Composites 275
Manickam Ramesh, Lakshminarasimhan Rajeshkumar, and Devarajan Balaji
15.1 Introduction 275
15.2 Mechanical Strength of Ramie Fiber Composites 277
15.3 Dynamic Properties of Ramie Fiber Composites 281
15.3.1 Temperature Influence 283
15.3.2 Storage Modulus 283
15.3.3 Viscous Modulus 284
15.3.4 Damping Factor 284
15.4 Conclusion 288
References 289
16 Fracture Toughness of the Natural Fiber-Reinforced Composites: A Review 293
Haasith Chittimenu, Monesh Pasupureddy, Chandrasekar Muthukumar, Senthilkumar Krishnasamy, Senthil Muthu Kumar Thiagamani, and Suchart Siengchin
16.1 Introduction 293
16.1.1 Fracture Toughness Tests 294
16.1.2 Mode-I Loading 296
16.1.2.1 Double Cantilever Beam Method (DCB) 296
16.1.2.2 Compact Tensile Method (CT) 296
16.1.2.3 Single-Edge Notch Bend Test (SENB) 296
16.1.3 Mode-II Loading 297
16.1.3.1 End-Notched Flexure Test (ENF) 297
16.1.4 Mode-III Loading 297
16.1.4.1 Split Cantilever Beam Method (SCB) 297
16.1.4.2 Edge Crack Torsion Test (ECT) 298
16.1.4.3 Mixed Mode Bend Test (MMB) 298
16.2 Factors Affecting the Fracture Energy of the Biocomposites 298
16.2.1 Fiber Parameters 298
16.2.2 Hybridization 299
16.2.3 Fiber Treatment 299
16.2.4 Aging 301
16.3 Conclusion 302
Acknowledgments 302
References 302
17 Dynamic Mechanical Behavior of Hybrid Flax/Basalt Fiber Polymer Composites 305
Arun Prasath Kanagaraj, Amuthakkannan Pandian, Veerasimman Arumugaprabu, Rajendran Deepak Joel Johnson, Vigneswaran Shanmugam, and Vairavan Manikandan
17.1 Introduction 305
17.2 Materials and Methods 307
17.2.1 Materials 307
17.2.2 Fabrication of Composites 307
17.2.3 Dynamic Mechanical Analysis 307
17.3 Result and Discussion 308
17.3.1 Damping Factor (Tan 𝛿) Response of Basalt/Flax Fiber Composite 308
17.3.2 Storage Modulus (E′) Response of Basalt/Flax Fiber Composite 308
17.3.3 Loss Modulus Performance of Basalt/Flax Fiber Composites 309
17.4 Conclusions 309
Acknowledgments 310
References 310
Index 313