+353-1-416-8900REST OF WORLD
+44-20-3973-8888REST OF WORLD
1-917-300-0470EAST COAST U.S
1-800-526-8630U.S. (TOLL FREE)

Remote Sensing Physics. An Introduction to Observing Earth from Space. Edition No. 1. AGU Advanced Textbooks

  • Book

  • 496 Pages
  • March 2022
  • John Wiley and Sons Ltd
  • ID: 5842294
An introduction to the physical principles underlying Earth remote sensing.

The development of spaceborne remote sensing technology has led to a new understanding of the complexity of our planet by allowing us to observe Earth and its environments on spatial and temporal scales that are unavailable to terrestrial sensors.

Remote Sensing Physics: An Introduction to Observing Earth from Space is a graduate-level text that examines the underlying physical principles and techniques used to make remote measurements, along with the algorithms used to extract geophysical information from those measurements.

Volume highlights include:

  • Basis for Earth remote sensing including ocean, land, and atmosphere
  • Description of satellite orbits relevant for Earth observations
  • Physics of passive sensing, including infrared, optical and microwave imagers
  • Physics of active sensing, including radars and lidars
  • Overview of current and future Earth observation missions
  • Compendium of resources including an extensive bibliography
  • Sample problem sets and answers available to instructors

The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Table of Contents

Preface xiii

Acronyms xv

1 Introduction to Remote Sensing 1

1.1 How Remote Sensing Works 4

References 9

2 Satellite Orbits 11

2.1 Computation of Elliptical Orbits 15

2.2 Low Earth Orbits 16

2.3 Geosynchronous Orbits 23

2.4 Molniya Orbit 28

2.5 Satellite Orbit Prediction 29

2.6 Satellite Orbital Trade-offs 29

References 31

3 Infrared Sensing 33

3.1 Introduction 33

3.2 Radiometry 34

3.3 Radiometric Sensor Response 37

3.3.1 Derivation 37

3.3.2 Example Sensor Response Calculations 40

3.3.3 Response of a Sensor with a Partially-Filled FOV 40

3.4 Blackbody Radiation 41

3.4.1 Planck’s Radiation Law 41

3.4.2 Microwave Blackbody 42

3.4.3 Low-Frequency and High-Frequency Limits 43

3.4.4 Stefan-Boltzmann Law 43

3.4.5 Wein’s Displacement Law 44

3.4.6 Emissivity 44

3.4.7 Equivalent Blackbody Temperature 44

3.5 IR Sea Surface Temperature 45

3.5.1 Contributors to Infrared Measurements 45

3.5.2 Correction of Low-Altitude Infrared Measurements 46

3.5.3 Correction of High-Altitude Infrared Measurements 48

3.6 Atmospheric Radiative Transfer 49

3.7 Propagation in Seawater 54

3.8 Smooth Surface Reflectance 58

3.9 Rough Surface Reflectance 60

3.10 Ocean Thermal Boundary Layer 63

3.11 Operational SST Measurements 66

3.11.1 AVHRR Instrument 66

3.11.2 AVHRR Processing 68

3.11.3 AVHRR SST Algorithms 70

3.11.4 Example AVHRR Images 71

3.11.5 VIIRS Instrument 73

3.11.6 SST Accuracy 75

3.11.7 Applications 77

3.12 Land Temperature - Theory 77

3.13 Operational Land Temperature 80

3.14 Terrestrial Evapotranspiration 86

3.15 Geologic Remote Sensing 87

3.15.1 Linear Mixture Theory and Spectral Unmixing 90

3.16 Atmospheric Sounding 91

References 95

4 Optical Sensing - Ocean Color 99

4.1 Introduction to Ocean Color 99

4.2 Fresnel Reflection 103

4.3 Skylight 106

4.4 Water-Leaving Radiance 107

4.5 Water Column Reflectance 110

4.5.1 Pure Seawater 112

4.5.2 Case 1 Waters 113

4.5.3 Case 2 Waters 114

4.6 Remote Sensing Reflectance 115

4.7 Ocean Color Data - Case 1 Water 117

4.7.1 Other Uses of Ocean Color 118

4.8 Atmospheric Corrections 119

4.9 Ocean Color Satellite Sensors 124

4.9.1 General History 124

4.9.2 SeaWiFS 126

4.9.3 MODIS 130

4.9.4 VIIRS 133

4.10 Ocean Chlorophyll Fluorescence 135

References 140

5 Optical Sensing - Land Surfaces 143

5.1 Introduction 143

5.2 Radiation over a Lambertian Surface 143

5.3 Atmospheric Corrections 147

5.4 Scattering from Vegetation 147

5.5 Normalized Difference Vegetation Index 153

5.6 Vegetation Condition and Temperature Condition Indices 158

5.7 Vegetation Indices from Hyperspectral Data 159

5.8 Landsat Satellites 161

5.9 High-resolution EO sensors 164

5.9.1 Introduction 164

5.9.2 First-Generation Systems 164

5.9.3 Second-Generation Systems 168

5.9.4 Third-Generation Systems 172

5.9.5 Commercial Smallsat Systems 174

References 176

6 Microwave Radiometry 179

6.1 Introduction to Microwave Radiometry 179

6.2 Microwave Radiometers 180

6.3 Microwave Radiometry 181

6.3.1 Antenna Pattern 182

6.3.2 Antenna Temperature 184

6.3.3 Examples 185

6.4 Polarization 185

6.4.1 Basic Polarization 185

6.4.2 Jones Vector 187

6.4.3 Stokes Parameters 187

6.5 Passive Microwave Sensing of the Ocean 188

6.5.1 Atmospheric Transmission 189

6.5.2 Seawater Emissivity 189

6.5.3 Fresnel Reflection Coefficients, Emissivity, and Skin Depth 190

6.5.4 Sky Radiometric Temperature 191

6.5.5 Sea Surface Brightness Temperature 193

6.5.6 Wind Direction from Polarization 197

6.6 Satellite Microwave Radiometers 198

6.6.1 SMMR 198

6.6.2 SSM/I and SSMI/S 198

6.6.3 SSM/I Wind Algorithm 200

6.6.4 AMSR-E 203

6.6.5 WindSat 204

6.7 Microwave Radiometry of Sea Ice 207

6.8 Sea Ice Measurements 213

6.9 Microwave Radiometry of Land Surfaces 218

6.10 Atmospheric Sounding 222

References 226

7 Radar 229

7.1 Radar Range Equation 229

7.2 Radar Cross-Section 232

7.3 Radar Resolution 236

7.4 Pulse Compression 239

7.5 Types of Radar 244

7.6 Example Terrestrial Radars 245

7.6.1 Weather Radars 245

7.6.2 HF Surface Wave Radar 248

References 249

8 Altimeters 251

8.1 Introduction to Altimeters 251

8.2 Specular Scattering 254

8.3 Altimeter Wind Speed 257

8.4 Altimeter Significant Wave Height 260

8.5 Altimeter Sea Surface Height 263

8.5.1 Introduction 263

8.5.2 Pulse-limited vs Beam-limited Altimeter 263

8.5.3 Altimeter Pulse Timing Precision 264

8.5.4 Altimeter Range Corrections 264

8.6 Sea Surface Topography 268

8.7 Measuring Gravity and Bathymetry 274

8.8 Delay-Doppler Altimeter 275

References 278

9 Scatterometers 281

9.1 Ocean Waves 281

9.2 Bragg Scattering 287

9.3 RCS Dependence on Wind 291

9.4 Scatterometer Algorithms 293

9.5 Fan-Beam Scatterometers 297

9.6 Conical-Scan Pencil-Beam Scatterometers 300

9.7 Conical-Scan Fan-Beam Scatterometers 304

References 307

10 Synthetic Aperture Radar 309

10.1 Introduction to SAR 309

10.2 SAR Azimuth Resolution 313

10.2.1 Doppler Time History 313

10.2.2 Azimuth Extent, Integration Time, and Doppler Bandwidth 316

10.2.3 Azimuth Resolution 316

10.2.4 SAR Timing, Resolution, and Swath Limits 318

10.2.5 The Magic of SAR Exposed 319

10.3 SAR Image Formation and Image Quality 320

10.4 SAR Imaging of Moving Scatterers 322

10.5 Multimode SARs 325

10.6 Polarimetric SAR 326

10.6.1 Polarimetric Response of Canonical Targets 327

10.6.2 Decompositions 328

10.6.3 Compact Polarimetry 329

10.7 SAR Systems 330

10.7.1 Radarsat-1 332

10.7.2 Envisat 334

10.7.3 PALSAR 335

10.7.4 Radarsat-2 335

10.7.5 TerraSAR-X 335

10.7.6 COSMO-SkyMed 335

10.7.7 Sentinel-1 336

10.7.8 Radarsat Constellation Mission (RCM) 337

10.7.9 Military SARs 337

10.8 Advanced SARs 339

10.8.1 Cross-Track Interferometry 339

10.8.2 Along-Track Interferometry 341

10.8.3 Differential Interferometry 344

10.8.4 Tomographic Interferometry 344

10.8.5 High-Resolution, Wide-Swath SAR 344

10.9 SAR Applications 346

10.9.1 SAR Ocean Surface Waves 347

10.9.2 SAR Winds 353

10.9.3 SAR Bathymetry 360

10.9.4 SAR Ocean Internal Waves 364

10.9.5 SAR Sea Ice 370

10.9.6 SAR Oil Slicks and Ship Detection 374

10.9.7 SAR Land Mapping Applications and Distortions 380

10.9.8 SAR Agricultural Applications 386

References 388

11 Lidar 393

11.1 Introduction 393

11.2 Types of Lidar 393

11.2.1 Direct vs Coherent Detection 394

11.3 Processes Driving Lidar Returns 395

11.3.1 Elastic Scattering 395

11.3.2 Inelastic Scattering 396

11.3.3 Fluorescence 397

11.4 Lidar Range Equation 397

11.4.1 Point Scattering Target 397

11.4.2 Lambertian Surface 398

11.4.3 Elastic Volume Scattering 398

11.4.4 Bathymetric Lidar 398

11.5 Lidar Receiver Types 400

11.5.1 Linear (full waveform) Lidar 400

11.5.2 Single Photon Lidar 401

11.6 Lidar Altimetry 402

11.6.1 NASA Airborne Topographic Mapper 402

11.6.2 Space-Based Lidar Altimeters (IceSat-1 & 2) 403

11.6.3 Bathymetric Lidar 405

11.7 Lidar Atmospheric Sensing 405

11.7.1 ADM-Aeolus 405

11.7.2 NASA CALIOP 408

References 411

12 Other Remote Sensing and Future Missions 413

12.1 Other Types of Remote Sensing 413

12.1.1 GRACE 413

12.1.2 Limb Sounding 414

12.2 Future Missions 414

12.2.1 NASA Missions 415

12.2.2 ESA Missions 416

12.2.3 Summary 418

References 419

Appendix A Constants 421

Appendix B Definitions of Common Angles 423

Appendix C Example Radiometric Calculations 427

Appendix D Optical Sensors 433

D.1 Example Optical Sensors 435

D.1.1 Photodiodes 435

D.1.2 Charge-Coupled Devices 437

D.1.3 CMOS Image Sensors 439

D.1.4 Bolometers and Microbolometers 440

D.2 Optical Sensor Design Examples 442

D.2.1 Computing Exposure Times 442

D.2.2 Impact of Digitization and Shot Noise on Contrast Detection 444

References 445

Appendix E Radar Design Example 447

Appendix F Remote Sensing Resources on the Internet 455

F.1 Information and Tutorials 455

F.2 Data 455

F.3 Data Processing Tools 456

F.4 Satellite and Sensor Databases 456

F.5 Other 456

Appendix G Useful Trigonometric Identities 457

Index 459

Authors

Rick Chapman Johns Hopkins University. Richard Gasparovic Johns Hopkins University.