Discover a one-of-a-kind treatment of perovskite photovoltaics
In less than a decade, the photovoltaics of organic-inorganic halide perovskite materials has surpassed the efficiency of semiconductor compounds like CdTe and CIGS in solar cells.
In Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications, distinguished engineer Dr. Tsutomu Miyasaka delivers a comprehensive exploration of foundational and advanced topics regarding halide perovskites. It summarizes the latest information and discussion in the field, from fundamental theory and materials to critical device applications. With contributions by top scientists working in the perovskite community, the accomplished editor has compiled a resource of central importance for researchers working on perovskite related materials and devices.
This edited volume includes coverage of new materials and their commercial and market potential in areas like perovskite solar cells, perovskite light-emitting diodes (LEDs), and perovskite-based photodetectors. It also includes: - A thorough introduction to halide perovskite materials, their synthesis, and dimension control - Comprehensive explorations of the photovoltaics of halide perovskites and their historical background - Practical discussions of solid-state photophysics and carrier transfer mechanisms in halide perovskite semiconductors - In-depth examinations of multi-cation anion-based high efficiency perovskite solar cells
Perfect for materials scientists, crystallization physicists, surface chemists, and solid-state physicists, Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications is also an indispensable resource for solid state chemists and device/electronics engineers.
Table of Contents
Preface xiii
1 Research Background and Recent Progress of Perovskite Photovoltaics 1
Tsutomu Miyasaka and Ajay K. Jena
1.1 Introduction 1
1.2 History of Halide Perovskite Photovoltaics 5
1.2.1 Discovery of the Perovskite Crystal Form 5
1.2.2 Discovery of Metal Halide Perovskites 6
1.2.3 Beginning of Halide Perovskite Photovoltaics 8
1.3 Semiconductor Properties of Organo-Lead Halide Perovskites 11
1.4 Working Principle of Perovskite Photovoltaics 15
1.5 Compositional Engineering for the Halide Perovskite Absorbers 18
1.6 Strategies to Stabilize Halide Perovskite Solar Cells 20
1.6.1 Bridging the Gap Between Efficiency and Stability 20
1.6.2 Enhancing Intrinsic Stability of Halide Perovskites 22
1.6.3 External and Environmental Stability 24
1.7 Progress of All inorganic and Lead-Free Perovskites 34
1.8 Enhancing Efficiency of Low-Cost Tandem Solar Cells 39
1.9 Space Applications of the Perovskite Solar Cells 42
1.10 Conclusion and Perspectives 44
References 45
2 Halide Perovskite Materials, Structural Dimensionality, and Synthesis 61
Yuko Takeoka and David B. Mitzi
2.1 Three-Dimensional and Low-Dimensional Semiconductors: Organic-Inorganic Perovskites 61
2.2 Perovskite-Type Metal Halide Compounds 62
2.3 Preparation of Two- to Three-Dimensional Lead Halide-Based Perovskite Compounds 66
2.3.1 Spin-Coating Method for Synthesis 67
2.3.2 Vacuum Evaporation Method 70
2.3.3 Two-Step Deposition Method 72
2.3.4 Self-Intercalation Method 73
2.3.5 Layer-by-Layer Self-Assembly Method 74
2.3.6 Langmuir-Blodgett Method 75
2.4 Conclusion 75
References 76
3 Microstructures and Grain Boundaries of Halide Perovskite Thin Films 81
Yuanyuan Zhou and Nitin P. Padture
3.1 Introduction 81
3.2 Microstructure Characteristics 82
3.2.1 The Nature of Grain Boundaries (GBs) 82
3.2.2 Grain Size and Distribution 86
3.2.3 Crystallographic Texture 87
3.3 Microstructural Evolution in HP Thin Films 88
3.3.1 Genesis of Microstructure 88
3.3.2 Grain Growth 89
3.4 Influence of Microstructures and GBs on Performance and Stability 92
3.4.1 Grain Size Effects 92
3.4.2 Effects of the Nature of GBs 95
3.4.3 Crystallographic Texture Effects 98
3.5 Outlook 99
Acknowledgments 101
References 101
4 Defect Properties of Halide Perovskites for Photovoltaic Applications 107
Zewen Xiao and Yanfa Yan
4.1 Introduction 107
4.2 Defect Properties of ABX3 Halide Perovskites 108
4.2.1 Pb-Based Halide Perovskites 108
4.2.1.1 Point Defects 108
4.2.1.2 Ideal Grain Boundaries 111
4.2.1.3 Ideal Surfaces 113
4.2.1.4 Surfaces and Boundaries in Real Thin Films 114
4.2.2 Sn-Based Halide Perovskites 115
4.2.3 Ge-Based Halide Perovskites 116
4.3 Defect Properties of Halide Perovskites Beyond ABX3 117
4.3.1 A2BX6 Halide Perovskite Derivatives 117
4.3.2 A3B2X9 Layered Halide Perovskites 118
4.3.3 A2B(I)B(III)X6 Halide Double Perovskites 120
4.4 Conclusion 123
References 123
5 Physics of Perovskite Solar Cells: Efficiency, Open-Circuit Voltage, and Recombination 127
Wolfgang Tress
5.1 Theory 127
5.1.1 Power-Conversion Efficiency of a Solar Cell 127
5.1.2 The Ideal Solar Cell: Shockley-Queisser Limit 129
5.1.3 Radiative Limit, Reciprocity, and Detailed Balance 132
5.1.4 Non-radiative Recombination and Role of Contacts 135
5.2 Determining Efficiency and Characterizing Recombination 137
5.2.1 The Current Density-Voltage (J-V) Curve 137
5.2.2 Determination of the Bandgap and the “Voltage Deficit” 138
5.2.3 Electroluminescence 142
5.2.4 Photoluminescence 142
5.2.5 Transient Photoluminescence 144
5.2.6 Electrochemical Impedance Spectroscopy 146
5.2.7 Transient Photovoltage Decay and IMVS 148
5.2.8 The Ideality Factor 150
5.2.9 Space Charge-Limited Currents 152
5.3 Recombination in Perovskite Solar Cells: WhatWe Know 152
5.3.1 Intrinsic Properties of the Perovskite Crystal 153
5.3.1.1 Relatively High Absorption and Fast Radiative Recombination 153
5.3.1.2 Shallow Defects and Defect Tolerance 153
5.3.1.3 High Dielectric Constant 154
5.3.1.4 Low-Frequency Lattice Phonons 154
5.3.1.5 Further Explanations for Reduced Recombination 155
5.3.2 Impurities 156
5.3.3 Grain Boundaries 156
5.3.4 Interfaces: Between Alignment and Passivation 157
5.3.5 Mobile Ions 159
5.4 Summary and Outlook 160
Acknowledgments 161
References 161
6 Ionic/Electronic Conduction and Capacitance of Halide Perovskite Materials 173
Juan Bisquert, Germà Garcia-Belmonte, and Antonio Guerrero
6.1 Introduction 173
6.2 Overview 174
6.3 Carrier Transport 176
6.3.1 General Determination of Transport Coefficients, Diffusion Coefficient, and Mobility 176
6.3.2 Mixed Ionic/Electronic Conduction and Time Constants 176
6.3.3 Measurement of Ionic Conductivity by Galvanostatic Transient Method 177
6.3.4 Measurement of Ionic Diffusion by Impedance Spectroscopy 179
6.3.5 Ionic Drift Causes Suppression of Luminescence 181
6.4 Interpretation of Capacitances in Semiconductor Devices 183
6.4.1 Dielectric Relaxation 184
6.4.2 Chemical Capacitance 184
6.4.3 Electrode Polarization 185
6.4.4 Depletion Capacitance at the Schottky Barrier 185
6.4.5 Capacitance Associated to Defect Levels 186
6.5 Surface Polarization and Capacitances of MHP 186
6.5.1 General Properties of the Capacitance of MHP 186
6.5.2 Complexity of Mott-Schottky Analysis 191
6.5.3 Measurement of Trap Density 192
6.6 Impedance Spectroscopy and the Equivalent Circuit Model 194
6.6.1 Interpretation of Equivalent Circuits 194
6.6.2 Negative Capacitance Phenomena 197
6.6.3 Application of IS Model to Understanding of Memory Effects 199
6.7 Intensity-Modulated Photocurrent Spectroscopy 200
6.8 Dynamic Response in Time Transient Methods 203
6.8.1 Time Transients of Photovoltage and Charge-Discharge Methods 203
6.8.2 Charge-Discharge Methods 205
6.8.3 Significance of Surface Charging in MHP 205
6.9 Conclusions 207
References 207
7 HysteresisofI-V Performance: Its Origin and Engineering for Elimination 215
Seul-Gi Kim and Nam-Gyu Park
7.1 Introduction 215
7.2 Hysteresis in Current-Voltage Performance 216
7.3 Material and Structure Design to Reduce Hysteresis 219
7.3.1 Grain Boundary Engineering 219
7.3.2 Interfacial Engineering 220
7.3.3 Defect Engineering 221
7.4 Effect of Alkali Cation Doping 223
7.4.1 Reduction in Hysteresis by KI Doping: A Universal Approach 223
7.4.2 Passivation Effect of Excess KI 225
7.4.3 Location of Potassium Ion in Perovskite 226
7.4.4 In situ Photoluminescence (PL) as a Tool to Measure Ion Migration Kinetics 227
7.5 Summary 229
References 230
8 High-Efficiency Solar Cells with Polyelemental, Multicomponent Perovskite Materials 233
Somayeh Gholipour, Yaser Abdi, and Michael Saliba
8.1 Introduction 233
8.2 Polyelemental, Multicomponent Engineering 235
8.2.1 Single-Cation Perovskites 236
8.2.2 Double-Cation Perovskites: Stabilizing the Black Phase 237
8.2.3 Triple-Cation Perovskites: Stable and Reproducible Devices 238
8.2.4 Quadruple-Cation Perovskite: Improvement of Long-Term Device Stability 239
8.2.5 Methylammonium-Free Perovskite: Staying in the Black Phase with Fewer Components 240
8.3 Conclusions 242
References 243
9 All-Inorganic Perovskite Photovoltaics 247
Ajay K. Jena, Zhanglin Guo, and Tsutomu Miyasaka
9.1 Introduction 247
9.2 All-Inorganic Lead Halide Perovskites 249
9.2.1 Cesium Lead Iodide (CsPbI3): Black-Phase Stabilization 249
9.2.1.1 Additive Approach 251
9.2.1.2 Quantum Dot-Induced Black-Phase Stabilization 252
9.2.1.3 Stabilization by Surface Treatment 253
9.2.1.4 B-Site Doping 253
9.2.2 Cesium Lead Bromide (CsPbBr3) 256
9.2.3 Cesium Lead Mixed-Halide Perovskites (CsPbI3-xBrx) 257
9.3 All-Inorganic Tin Halide Perovskites 267
9.3.1 CsSnX3 (X = I, Br, Cl) 267
9.3.2 Cs2SnX6 (X =I, Br) 269
9.4 All-Inorganic Silver-Bismuth Halides 270
9.4.1 Cs2M1(I)M2(III)X6 Double Perovskite 271
9.4.2 AgaBibXa+3b Rudorffites 275
9.5 Summary and Outlook 279
Acknowledgments 280
References 280
10 Sn-Based Halide Perovskite Solar Cells 293
Shuzi Hayase
10.1 Introduction 293
10.2 Sn-Pb Perovskite Solar Cells 293
10.2.1 Background 293
10.2.2 Stabilization of Sn(II) Ions 295
10.2.3 Efficiency Enhancement 296
10.2.4 Interfacial Engineering and Device Architecture 298
10.3 Pb-free Sn Perovskite Solar Cells 304
10.3.1 Background 304
10.3.2 Ge-Doped Sn Perovskites 307
10.3.3 Efficiency Enhancement by Grain Boundary Passivation 309
10.4 Conclusion 314
References 315
11 Quantum Dots of Halide Perovskite 321
Yaohong Zhang, Guohua Wu, and Qing Shen
11.1 Introduction 321
11.2 The Synthesis of Halide Perovskite QDs 321
11.2.1 Ligand-Assisted Reprecipitation Method 322
11.2.2 Hot Injection Method 322
11.2.3 Ion Exchange Reactions 325
11.3 The Photophysics of Halide Perovskite QDs 326
11.3.1 Tunable Bandgap 326
11.3.2 Multiple Exciton Generation 327
11.3.3 Hot Electron Extraction 327
11.4 Surface Passivation of Halide Perovskite QDs 329
11.4.1 Surface Ligand Engineering 329
11.4.2 Post-Synthetic Treatment 331
11.4.3 Surface Coating 332
11.5 Applications of Halide Perovskite QDs 334
11.5.1 Light-Emitting Diode (LED) 334
11.5.2 Solar Cells 337
11.6 Conclusion and Outlook 340
References 340
12 Perovskite Light-Emitting Diode Technologies 345
Kangyu Ji, Miguel Anaya, and Samuel D. Stranks
12.1 Introduction 345
12.2 Physics Behind Operation of Perovskite-Based LEDs 346
12.2.1 Photon Generation by Electrostimulation 347
12.2.2 Charge Balance in PeLEDs 348
12.2.3 Non-radiative Losses in PeLEDs 349
12.2.4 Photon Recycling in PeLEDs 350
12.3 Progress on Perovskite-Based LEDs 350
12.3.1 Literature Review 356
12.3.1.1 Near-Infrared PeLEDs 356
12.3.1.2 Red PeLEDs 359
12.3.1.3 Green PeLEDs 361
12.3.1.4 Blue PeLEDs 365
12.4 Challenges and Outlook 367
12.5 Conclusions 370
Acknowledgments 370
References 371
13 Perovskites Enabled Highly Sensitive and Fast Photodetectors 383
Nicholas Lauersdorf and Jinsong Huang
13.1 Introduction 383
13.2 Why Perovskites for Photodetectors 383
13.3 Types of Perovskite Photodetectors 386
13.3.1 Photodiodes 386
13.3.1.1 Broadband Photodiodes 387
13.3.1.2 Narrowband Photodiodes 392
13.3.2 Photoconductors 394
13.3.2.1 Vertical Photoconductors 396
13.3.2.2 Lateral Photoconductors 397
13.3.3 Phototransistor 400
13.4 Conclusion 402
Acknowledgment 402
Disclaimer 402
References 403
14 Metal Halide Perovskites for Sensitive X-ray Detectors 411
Jingjing Zhao, Liang Zhao, and Jinsong Huang
14.1 Introduction 411
14.2 Working Mechanism of X-ray Detectors 412
14.3 Material Properties of Ideal X-ray Detectors 413
14.4 Conventional X-ray Detectors 415
14.5 Perovskite X-ray Detectors 416
14.5.1 Direct Perovskite X-ray Detectors 416
14.5.2 Perovskite X-ray Scintillators 419
14.6 Characterization of X-ray Flat Panels 422
14.6.1 Sensitivity 422
14.6.2 DQE 422
14.6.3 MTF 423
14.6.4 Pixel-to-Pixel Uniformity 424
14.6.5 Imaging Lag 425
14.6.6 Ghosting 425
14.7 Summary and Outlook 426
Acknowledgement 427
References 427
15 Perovskite-Based Multijunction Solar Cells 433
Jérémie Werner, Caleb C. Boyd, and Michael D. McGehee
15.1 Introduction 433
15.2 Why Perovskites? 435
15.3 How to Make an Efficient Perovskite-Based Tandem? 435
15.3.1 Low Bandgap Solar Cell 436
15.3.1.1 Silicon 436
15.3.1.2 Chalcopyrites: CIGS and CIS 437
15.3.1.3 Sn/Pb Low Bandgap Perovskites 437
15.3.2 Recombination Junction 438
15.3.2.1 Nanocrystalline Silicon Junction 439
15.3.2.2 Recombination Layer for All-Perovskite Tandems 440
15.3.3 Wide-Bandgap Perovskite Solar Cell 440
15.3.4 Mitigating Optical Losses 442
15.3.4.1 Parasitic Absorption Losses 442
15.3.4.2 Reflection Losses: Front, Middle, and Back 443
15.3.4.3 Textured Substrates 445
15.3.4.4 Current Matching Versus Power Matching 447
15.4 Toward Commercialization 447
15.4.1 Energy Yield 447
15.4.2 Cost 448
15.4.3 Market Choice 448
15.5 Beyond Tandems: Triple? 449
15.6 Concluding Remarks 450
References 450
Index 455